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Abstract. We discuss how reactive and dissipative nonlinearities affect the intrinsic

response of superconducting thin-film resonators. We explain how most, if not all,

of the complex phenomena commonly seen can be described by a model in which

the underlying resonance is a single-pole Lorentzian, but whose centre frequency and

quality factor change as external parameters, such as readout power and frequency,

are varied. What is seen during a vector-network-analyser measurement is series of

samples taken from an ideal Lorentzian that is shifting and spreading as the readout

frequency is changed. According to this model, it is perfectly proper to refer to, and

measure, the resonant frequency and quality factor of the underlying resonance, even

though the swept-frequency curves appear highly distorted and hysteretic. In those

cases where the resonance curve is highly distorted, the specific shape of the trajectory

in the Argand plane gives valuable insights into the second-order physical processes

present. We discuss the formulation and consequences of this approach in the case

of nonlinear kinetic inductance, two-level-system loss, quasiparticle generation, and a

generic model based on a power-law form. The generic model captures the key features

of specific dissipative nonlinearities, but additionally leads to insights into how general

dissipative processes create characteristic forms in the Argand plane. We provide

detailed formulations in each case, and indicate how they lead to the wide variety of

phenomena commonly seen in experimental data. We also explain how the properties of

the underlying resonance can be extracted from this data. Overall, our paper provides

a self-contained compendium of behaviour that will help practitioners interpret and

determine important parameters from distorted swept-frequency measurements.
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1. Introduction

Superconducting thin-film microwave resonators are being developed for a wide range

of applications. For example, in astronomy, large arrays of kinetic inductance detectors

(KIDs) are being developed for ultra-low-noise measurements (100-800 GHz) of the

polarisation state of the cosmic microwave background radiation [1–3], to carry out

galaxy surveys in the sub-millimetre-wave region [4–7], and for energy and time resolved

optical and x-ray photon counting experiments in high energy astrophysics [8, 9]. Arrays

of superconducting resonators coupled to superconducting quantum interference devices

(SQUIDs) provide a convenient way of reading out large arrays of ultra-low-noise

devices that are not themselves easily multiplexed, such as transition edge sensors [10–

12]. In quantum computing, superconducting resonators are being coupled to tunnel

junctions to create qubits [13], and to embedded spin systems to create memory

elements [14]. More generally, thin-film superconducting resonators are a natural system

for exploring chip-based quantum electrodynamics [15, 16], and are being realised in

exotic combinations, such as superconducting electromagnetic resonators coupled to

micromechanical cantilevers for studying quantum-statistical processes [17].

Not only are the applications varied, the physical realisations are diverse.

Superconducting resonators can take the form of microstrip or coplanar transmission

lines, shaped conductors in waveguide cavities, or even lumped-element components

based on thin-film inductors and capacitors. The metallic films usually take the form of

normal metals or superconductors (Nb, Al, Ta, Ti, NbN, NbTiN) laid down on dielectric

substrates (Si, SiN, and Sapphire) deposited under ultra-high vacuum. The conductors

can also take the form of proximitised multilayers (TiAl, TiAu, MoAu) for customising

the bulk properties of films, and the substrates can be irradiated (nitrogen-vacancy

centres in diamond) or surface implanted with dopants (P, Bi) to enable spin-system

coupling [14].

A crucial point is that when superconducting resonators are measured, they often

do not behave in a simple linear way having a near-perfect Lorentzian response, but

instead show transmission and reflection coefficients that display peculiar shapes in the

complex plane. Moreover, their behaviour changes as the readout power is increased,

and often the resonance curves switch hysteretically between two stable states as the

readout frequency is swept up and down. These effects can vary significantly between

two notionally identical devices, emphasising the importance of fabrication methods and

conditions. It follows that although a device may be designed on the basis of near-ideal

behaviour, the actual behaviour is influenced strongly by the non-ideal characteristics of

the materials used. Understanding these ‘second order’ effects is an essential feature of

any development programme, particularly when quantum-limited operation is sought.

In this paper, we review the theoretical description of superconducting resonators,

and show how a simple model based on the notion of power and energy dependent

resonance frequency and quality factor can account for a wide variety of phenomena

seen. We show that a considerable amount of physical information is contained in
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the behaviour of the quality factor, not just in the resonant frequency, as external

parameters, such as the readout power, are changed. In fact, particular shapes in

the complex plane are characteristic of different physical mechanisms, and it is highly

desirable to be able to identify these easily when carrying out experiments, or when,

say, characterising films and geometries. We describe a range of methods for extracting

physical information from distorted resonance curves, which can then be used for

optimising performance, and for predicting operational aspects of behaviour such as

optimal readout power, small signal nonlinearity, and noise. Further, we show that

measurements of behaviour at high readout powers provide another way of probing and

characterise microscopic processes in a device, even if it is normally operated in a low

power regime.

2. Preliminaries

2.1. Definitions of key symbols used throughout the paper

νr Resonant frequency.

νr,0 Resonant frequency in the limit of zero readout power.

ν Measurement/readout frequency.

Pr Applied power at readout port.

U Total energy stored in the resonator.

Pt Total power loss from the resonator.

Pd Power dissipated internally in the resonator. The difference between Pt and Pd

is the power loss to the readout circuit.

Qn General notation for quality factor contribution from a particular loss

mechanism.

qn Normalised quality factor qn = Qn/Qc, where Qc is the coupling quality factor.

Qt Total resonator quality factor, accounting for all losses.

Qi Internal (or intrinsic) quality factor resulting from all internal losses (Pd).

Qc Coupling quality factor associated with power loss to the readout circuit.

Qtls Quality factor from two-level-system (TLS) loss.

Qtls,min Value of Qtls in the limit of zero readout power.

Qqp Quality factor from losses in the quasiparticle systems of the superconductors in

the resonator. This is associated with the Ohmic losses on any superconducting

surfaces.

Qqp,th Value of Qqp when the quasiparticle population is purely thermal.

Qnl Used to indicate the quality factor contribution from the model nonlinearity of

Section 6.
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Qother Used throughout to indicate the contribution from internal loss mechanisms

other than the particular mechanism of interest. Assumed independent of

applied readout power.

Qn,min, Qn,max

Minimum and maximum value of Qn as a function of readout power.

Pc,n Scale power for a nonlinear effects due to a particular mechanism. In this paper

n = tls, qp and nl, corresponding to quasiparticle losses, TLS losses and losses

due to the power-law model process.

Uc,n Scale energy for a nonlinear effects due to a particular mechanism.

x0 ‘Applied’ fractional detuning, as defined by (ν − νr,0)/νr,0.

x ‘Realised’ fractional detuning, as defined by (ν − νr)/νr. Here νr is the

instantaneous value of the resonant frequency. Because νr can vary depending

on the energy stored or dissipated in the resonator, x and x0 are only equal in

the absence of reactive nonlinearities or in the limit of zero readout power. It

is the realised fraction detuning that determines the measured S parameters.

y Defined as y = Qcx. Scaling x by Qt yields the realised detuning as measured

in linewidths from the resonator: when Qtx = 1 the readout frequency is tuned

a resonance-width above the centre frequency. Since we assume Qc is fixed and

by definition Qt ≤ Qc, y specifically corresponds to the maximum value Qtx

can take for all readout powers.

y0 Defined as y0 = Qcx0. The applied detuning measured in linewidths.

Tc Superconducting critical temperature.

∆ Superconducting gap energy.

nqp Quasiparticle number density in the active volume of the device.

nqp,th nqp,th is the value of nqp in the limit of zero readout power, i.e. arising from

thermal processes alone.

n∗ Value of nqp,th at which Qqp = Qc.

nω Number density of pair-breaking phonons with energy in excess of twice the

superconducting gap energy, 2∆, in the active volume of the resonator.

nω,th nω,th is the value of nω in the limit of zero readout power, i.e. arising from

thermal processes alone.

V Volume of the active region of the device.

τpb, τl, R0, ǫr
Parameters in the Rothwarf-Taylor model. τpb is the pair-breaking lifetime, τl
is the timescale on which pair-breaking phonons are lost to scattering, R0 is the

quasiparticle recombination rate and ǫr is the efficiency with which dissipated

readout power is converted to pair-breaking phonons.

Zs = Rs + iXs

Surface impedance of the superconductor. Rs and Xs are the resistive and

reactive components, respectively.
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2.2. Quality factor

Quality factor is a well known measure of energy loss in resonant circuits. When the

loss is due to a combination of dissipative processes, it is common to define a Q-like

measure for each of the processes. However, a range of conventions exist, and so in this

section we outline the terminology that will be used in this paper.

Let U be the energy stored in a resonator having resonant frequency νr. If the

average total power dissipated is Pt, then the overall quality factor Qt is defined by

Qt =
2πνrU

Pt
. (1)

For a resonator coupled to an external circuit, Pt includes the energy lost to that circuit.

Now assume that the total loss is due to a number of different dissipative processes, such

that Pt =
∑

n Pn. Then

Q−1
t =

∑

n

Q−1
n , (2)

where

Qn =
2πνrU

Pn

(3)

are effective quality factors, or equivalently the actual quality factor when only the n’th

loss is present. The total internal quality factor, Qi characterises losses ‘internal’ to

the resonator, in the sense they would still exist if the resonator were isolated from

the readout circuit. Qi may comprise contributions from several microscopic processes:

Ohmic loss and dielectric loss are examples. Qi is also commonly referred to as the

unloaded [18] or intrinsic [19] quality factor. The total coupling quality factor, Qc, is

associated with the power lost from the resonator to the readout circuit. This loss is a

pure feature of coupling and exists by virtue of reciprocity – if energy can be transferred

into the resonator, it can also be transferred out of the resonator. Qc may also comprise

loss by several mechanisms, e.g. to different ports of a multiport readout system. Based

on these definitions, we can always make the division

Q−1
t = Q−1

i +Q−1
c . (4)

Qt in this instance is also sometimes referred to as the loaded -Q of the device [18]. A

device is said to be undercoupled or overcoupled if Qc > Qi or Qc < Qi, respectively.

Throughout this paper, we will use lower-case q to denote a quality factor normalised

to the coupling quality factor:

qn =
Qn

Qc
. (5)

qn is a measure of the degree to which power lost through mechanism n compares with

the power lost to the readout circuit.
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2.3. Microwave scattering parameters of common resonator circuits

Consider a device comprising a resonator embedded in, and lightly coupled to, a lossless,

reciprocal, multiport readout circuit. Temporal coupled mode theory [20] can be used

to show that the microwave scattering parameters {Smn} at the external ports of the

overall circuit have the general form

Smn(ν) = Γmn +
Kmn

1 + 2iQtx
. (6)

Γ is the scattering matrix of the isolated readout circuit, K is a symmetric coupling

matrix, and x the realised fractional detuning,

x =
ν − νr
νr

, (7)

where ν is the readout frequency. We will also refer to the realised detuning y in

coupling-Q linewidths, which we define by

y = Qcx. (8)

Strictly we are making a single-pole approximation by neglecting the contribution from

the pole at ν = −νr, requiring Qt ≫ 1.

(6) describes a very wide range of devices, but for illustrative purposes we will use

the specific example of an embedding circuit having 2 external ports. In the case of a

short-circuited λ/4 ‘resonator’, with a series coupling capacitor, connected in parallel

with a through transmission line, the equivalent circuit takes the form of Figure 1 (a),

and the scattering elements of the whole device become

S11 = S22 = −Qt

Qc

1

1 + 2iQtx
(9)

and

S12 = S21 = 1 + S11 = 1− Qt

Qc

1

1 + 2iQtx
, (10)

which displays a maximum in reflection S11 = S22 = −Qt/Qc and a minimum in

transmission S12 = S21 = 1 − Qt/Qc at resonance: remembering that Qt ≤ Qc.

An optimally coupled resonator Qt = Qc displays near ideal behaviour, reducing the

transmitted signal to zero at resonance. This is a good model of many devices, such

as KIDs, independent of the specific physical realisation [21]. In the case of a λ/2

‘resonator’, with two series coupling capacitors, connected in series with a through

transmission line, the equivalent circuit takes the form of Figure 1 (b), and the scattering

elements of the whole device become

S11 = S22 = 1− Qt

Qc

1

1 + 2iQtx
, (11)

and

S12 = S21 = −Qt

Qc

1

1 + 2iQtx
, (12)
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Figure 1. (a) the LCR tank represents the superconducting resonator, which could

be a shorted quarter-wave superconducting transmission line [6, 22], an open-ended

half-wave line [23, 24] or an implementation in discrete components [25, 26]. The LCR

tank is lightly capacitively shunt-coupled across the readout transmission line, giving

a null in transmission (S21 and S12) on resonance. (b) the LCR tank circuit represents

a superconducting half-wave line that is open at both ends. This is lightly capacitively

coupled in series in the readout line, giving a maximum in transmission on resonance.

Inductively coupled implementations of both designs are also possible [27, 28].

which displays a minimum in reflection S11 = S22 = 1 − Qt/Qc and maximum in

transmission S12 = −Qt/Qc at resonance, illustrating the duality of parallel- and series-

resonant circuits.

In many devices, one seeks a resonant notch that approaches zero, or a resonant

peak that approaches unity, and in both of these cases, the coupling quality factor must

be chosen to dominate the losses, which limits the operating Qt to a value lower than

that implied by Qi.

2.4. Nonlinear behaviour

Nonlinear behaviour manifests itself as variations in the {Smn} as the amplitude of the

readout signal is changed. For example, swept-frequency measurements of complex-

valued scattering parameters with a vector network analyzer (VNA) can lead to traces

that vary with readout power. Numerous distorted and hysteretic resonance shapes can

occur [29–31]. Here we explain many of the observed effects, and in particular consider

the broad category of nonlinear behaviour that can be described as a dependence of

the resonance frequency and/or quality factor on the power dissipated Pd internally (as

distinct from the total power flowing out of the resonator, Pt, which also includes the

coupling loss): νr(Pd) and Qn(Pd) respectively. It is clear that the dissipated power can
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be calculated once the scattering parameters are known.

In some cases, such as heating, the dependence on Pd is direct. However, it follows

from (1)–(3) that U and {Pn} can all be expressed in terms of Pd provided the {Qn}
are known, and so the resonant frequency and quality factor can be written in terms of

Pd even for mechanisms that do not involve heating directly. We will refer to changes

in resonant frequency with dissipated power, νr(Pd), as reactive nonlinearities, as they

are primarily caused by changes in the reactive elements of a resonator. This will be

illustrated for specific cases later. Equivalently, we will refer to changes in quality

factor with dissipated power, Qn(Pd), as dissipative nonlinearities, as they are primarily

caused by changes in the resistive elements of a resonator. In this context, we will

make two assumptions: (i) The coupling quality factor exhibits no nonlinear behaviour,

which is true for most devices because the coupling is via a near-perfect capacitance,

self-inductance, or mutual inductance. Modifying the forthcoming analysis to relax

this assumption is not in itself difficult, but adds a significant algebraic overhead that

distracts from the main results. (ii) The scattering parameters are described by the

functional form given in (6), but with nonlinearity occurring through νr(Pd) and Qn(Pd)

under all conditions. Physically, this corresponds to the situation where the circuit

topology remains constant, and it is only the component values that change with readout

signal level. Within this framework, the values of {Smn} can be found for a given applied

signal level through finding self consistent solutions to (6), and νr(Pd) and Qn(Pd).

Indeed it is this generic mechanism that creates, under different conditions, many of the

physical phenomena seen.

2.5. Nonlinearity in the Argand plane

A characteristic of linear resonant circuits is that the scattering parameters all trace

out circular paths in the Argand plane as a function of frequency: only the centres and

radii change with the circuit topology and circuit parameters. This behaviour occurs

because expressions having the form of (6) constitute bilinear maps.

To illustrate this feature consider S21 for a parallel resonant circuit in the linear

regime, as shown by the blue (solid) lines in Figure 2. The left diagram shows the data

in the Argand plane, while the right diagram shows the equivalent plots of transmission

magnitude and phase as a function of the detuning in linewidths, y0, relative to the

resonant frequency with infinitesimal readout power. From (10) we can derive

|S21 − C| = Qt

2Qc
(13)

and

θ = Arg[S21 − C] = π − 2 tan−1 (2Qtx) , (14)

where

C = 1− Qt

2Qc

. (15)
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Figure 2. S21 as a function of frequency in the Argand plane on the left, and in the

form |S21| and Arg[S21] versus y0 on the right. y0 is the applied detuning in (minimum)

linewidths relative to the resonant frequency at infinitesimal readout power. Blue

(solid) lines show the ideal linear behaviour, with the circles indicating a set of evenly

space frequency points. Green lines on the right show typical behaviour when the

nonlinearity is purely reactive, with the diagonal crosses indicating a set of evenly

spaced frequency points (same points indicated on the left). Solid lines show the

curve measured sweeping down in frequency, while the dotted lines show the curve

on sweeping up. These curves have been calculated assuming the resonant frequency

shifts in proportion to the energy stored in the resonator (see Section 3.4). The red

(dashed) lines show the behaviour for a hypothetical, purely dissipative, nonlinearity,

with the horizontal crosses indicating a set of evenly spaced frequency points. They

were calculated for a model in whichQi is inversely proportional to the power dissipated

in the device (see Section 6). Note that S21 traces clockwise around the circles in the

Argand plane with increasing readout frequency.

(13) implies S21 is constrained to lie on a circle, with C the centre. θ, as defined, is the

angle subtended by S21 at C as measured anticlockwise from the real axis; (14) therefore

describes the motion of S21 around the circle as a function of frequency. The blue circles

in Figure 2 indicate the value of S21 at a set of evenly spaced frequency points spanning

the resonance with S21 moving clockwise around the circle as a function of frequency.

Nonlinear behaviour can result in the resonance circle becoming distorted. First we

note that for purely reactive nonlinear behaviour, with Qt invariant over a sweep, (13)

still constrains S21 to lie on a circle. The motion of S21 around the circle with frequency

may change, with the green diagonal crosses in Figure 2 indicating, for example, how

the frequency points corresponding to the blue circles might move. Hysteresis with

sweep direction may also be observed, and some points of the circle may even become

inaccessible [29]. The radius and centre of the circle contain important information, even

though the resonance curve is hysteretic. (13) shows that only nonlinear dissipative
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behaviour can distort S21 from a circular path. For example, the red (dashed) lines

in Figure 2 show hypothetical curves for a device where Qt decreases with dissipated

power, causing the effective radius of the ‘circle’ to decrease closer to resonance. In

fact, two characteristic circles seem to be present. In addition, (14) indicates that

dissipative nonlinearities can also influence the rate at which S21 moves around the circle

in the same way as reactive nonlinearities. The preceding discussion applies equally

well to any scattering parameter of any device described by (6). In what follows we

will show that different dissipative processes produce characteristic distortions, making

the shapes, radii, and centres of resonance ‘circles’ powerful diagnostics of underlying

physical mechanisms.

2.6. Measuring readout power

Where we present experimental data measured with a VNA, we will report the VNA

power setting rather than the power at the device. Our primary interest in this paper

is the functional form of the nonlinear behaviour, rather than absolute values of model

parameters. From this perspective, the VNA power and power at the device can be

used interchangeably, provided the two quantities are linearly related. Any constant of

proportionality can simply be absorbed into the definitions of the model’s parameters.

It is straightforward to rescale our plots from VNA power to device power. Where

we use VNA power as an axis variable it is always expressed in logarithmic units of

dBm. As a result, the equivalent plot in terms of power at the detector in dBm is

simply a translation of the original data and fit lines by a fixed offset along the power

axis. Crucially, functional forms and gradients are left unchanged. The offset is the

power gain, in dB, between the VNA port and sample: we estimate this to be -31±2 dB

for our experimental arrangement, based on manufacturer’s data for the components

used.

3. Distortions in swept-frequency S-parameter measurements

3.1. Origin of distortion

Consider an idealised model of a swept-frequency S-parameter measurement with a

VNA or homodyne readout system [21]. The device under test is a two-port nonlinear

resonator of the type described in Section 2.2, with generalised S-parameters given by

(9) and (10). Assume that all S-parameters and power-wave amplitudes are defined

relative to reference impedance Z0.

A sinusoidal voltage source with frequency ν and real output impedance Z0 is used

to drive the resonator at port 1 and a load of impedance Z0 is connected to port 2. Under

these conditions, S11 = b1/a1 and S21 = b2/a1 are the scattering parameters referenced

to Z0, and a1, b1 and b2 are the measured complex amplitudes of the incident travelling

wave at port 1, outgoing wave at port 1 and outgoing wave at port 2, respectively.
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Figure 3. Diagram illustrating the origin of resonance curve distortion according to

the mechanism described in Section 3. It is assumed the nonlinearities affect only

Qi and νr, but not the underlying single-pole nature of the electrical response. At

a particular measurement frequency, we measure S21 for this underlying response for

Qi and νr at that frequency and power level. However, Qi and νr change between

measurement frequencies as a result of the nonlinear behaviour. This is illustrated

by the coloured lines in the two plots, which show the underlying single-pole resonant

response at the frequency of the marker of matching colour on the black line. The

black lines then show the resulting distorted traces as would be recorded in a swept

frequency measurement. For ease of identification, an extra marker has been added

to the underlying response curves at the point of zero realised detuning (y = 0). This

matches the marker at the corresponding measurement frequency on the black lines.

Assume that the source frequency is swept to measure S11(ν) and S21(ν) while keeping

the readout power Pr = |a1|2 constant.

If the resonator is driven into a nonlinear regime, the variation in the dissipated

power with frequency will generally result in distortion of the measured data compared

with (9) and (10). Visually, we will record resonance curves that look like the red

and green lines on the right in Figure 2, rather than the blue line. Now consider the

mechanism by which this distortion arises in our framework.

The dissipated power is the difference between the outgoing power at ports 1 and

2 and the incoming power at port 1,

Pd = |a1|2 − |b1|2 − |b2|2 = (1− |S11|2 − |S21|2)Pr. (16)

Using (9) and (10) to substitute for the S-parameters, we obtain

p =
2η

(1 + η)2 + 4y2
, (17)

where p = Pd/Pr is the normalised power dissipation, η = q−1
i = Qc/Qi is the normalised

internal dissipation factor and y is the detuning in linewidths as defined in Section 2.2.
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(17) indicates that the dissipated power peaks sharply at 2η/(1 + η)2 as the source

frequency is tuned through resonance, and falls to zero either side. In the same notation

S11 = S21 − 1 = − 1

1 + η + 2iy
. (18)

However, η and y are both functions of the dissipated power through their dependence

on Qi and the resonant frequency, with y also dependent on the readout frequency. Since

the incident readout power is fixed in a frequency sweep, we can alternatively express

this as a dependence on normalised dissipated power: η(p) and y(ν, p), respectively.

When the source frequency is changed to a new value, the dissipated power (and with it

Qi and the resonant frequency) evolves to a new equilibrium. It follows from (17) that

the normalised dissipated power in the final state, p0, must satisfy the condition

p0 =
2η

(1 + η(p0))2 + 4y(ν, p0)2
, (19)

at the readout frequency ν. The dynamical process by which the circuit moves to the

equilibrium condition depends on the physical realisation, and an example has been

described by Thompson [31]. In the subsequent discussion we will assume that ν is

always swept slowly enough that (19) is satisfied at all points, for example that there

are no thermal delays, and we will use the notation p, rather than p0, without confusion.

Note that there may be multiple solutions of (19), in which case hysteretic behaviour

can occur.

The proceeding discussion indicates how quality factor and resonant frequency can

become functions of the measurement frequency, giving distorted resonance curves of

the kind shown in Figure 2. There is a simple visualisation of the process: Figure 3.

At each measurement frequency, the circuit has a simple Lorentzian resonance, and

the measurement simply samples one point on this resonance. If the measurement

frequency is changed, the underlying resonance curve changes, giving rise to a new

sample taken from a new Lorentzian. Thus the observed shape is merely a manisfistation

of the fact that a simple underlying Lorentzian is sweeping through the sample points

taken: the underlying curve being swept out, as defined by (9) and (10), changes as

we proceed through the swept-frequency measurement process. Crucially, the origins of

the distortions lie in translations and rescalings of the underlying linear resonance, and

this puts constraints on the observed behaviour. In fact, certain features of the linear

resonant behaviour carry over to even highly distorted curves, as we will show.

This model emphasises why the experimenter does not usually have direct control

over the detuning x as given by (7): they can set ν, but in the presence of reactive

nonlinearities they may not know νr. We will refer to x throughout as the ‘realised’

detuning at a particular frequency. It is x that is used in (9)–(12) to calculate S, and

which determines the underlying resonance curve at a point as illustrated in Figure 3.

However, it is still often useful to express a readout frequency as a detuning. To do so

we can use the limiting value νr,0 of the readout frequency at zero (or sufficiently low)

readout power as our reference frequency. Accordingly, we define the ‘applied’ detuning
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x0 as

x0 =
ν − νr,0
νr,0

. (20)

The concepts of applied and realised detuning will prove particularly useful in the next

section.

3.2. Point of zero realised detuning

The point of zero realised detuning, x = y = 0, occurs when the measurement frequency

is equal to the resonant frequency of the device despite the parametric changes present.

If a shunt resonator behaves purely linearly, the point of zero-detuning in the frequency-

sweep can be identified from one of the following conditions: (i) The transmission phase

is (and crosses through) zero. (ii) The transmission gain T = |S21|2 is minimised. (iii)

The reflection factor R = |S11|2 is maximised. For linear resonators with S-parameters

different from (9) and (10), equivalent conditions can be determined that will depend

on Γmn and Kmn in (6).

In the case of a nonlinear resonator, we must look for the point in the sweep where

y(ν, p) = 0. Here, the readout frequency is equal to the resonant frequency of the

underlying resonance. We will now show that aspects of the conditions (i)–(iii) carry

over to distorted, and even hysteretic, cases. Again we will assume the measurement

arrangement of Section 3.1, and that the S-parameters of the device under test are given

by (9) and (10). The same methods can be applied to other types of device to derive

equivalent conditions.

Consider the phase-shift on transmission through the nonlinear resonator, as given

by the argument of S21. The distorted curve is generated from (10) by varying νr and

Qi with readout frequency, keeping both real. (10) is such that Arg[S21] = 0 if and only

if x = y = 0; therefore, even in the case of a distorted curve, we know that the detuning

is zero anywhere the transmission phase is zero, i.e. (i) still holds.

A possible source of confusion occurs experimentally when a device exhibits

switching. For example, the green dashed curve in Figure 2 appears to pass through

zero near y0 ≈ −1.2, but in actual fact the device is merely changing state, and the

response is discontinuous: y 6= 0. In practice, it should be easy to identify such cases

because they coincide with similar discontinuities in R and T .

To determine the stationary points of R and T for a nonlinear resonator, we must

calculate their derivatives with respect to the readout frequency. It follows from (16)

and (18) that

R =
p

2η
(21)

and

T = 1− p− R. (22)
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Taking the total derivatives of (21) and (22) with respect to ν and then using the chain

rule we obtain
dR

dν
=

1

2η

[

1− p

η

dη

dp

]dp

dν
(23)

and
dT

dν
= − 1

2η

[

1 + 2η − p

η

dη

dp

]dp

dν
, (24)

where we have suppressed the dependence of η on p in the notation for convenience.

By taking the total derivative of (19) with respect to ν, we can obtain the follow

condition involving dp/dv

dp

dν
=

p

η

[

1− (1 + η)p
]dη

dp

dp

dv
− 4p2y

η

dy

dν
. (25)

However, it also follows by partial differentiation that

dy

dν
=

(

∂y

∂ν

)

p

+

(

∂y

∂p

)

ν

dp

dν
. (26)

Using (26) to substitute for dy/dν in (25) and then solving the resulting equation for

dp/dv, we obtain

dp

dν
= −4p2κy

η

(

∂y

∂ν

)

p

(27)

where

κ−1 = 1− p

η
[1− (1 + η)p]

dη

dp
+

4p2y

η

(

∂y

∂p

)

ν

. (28)

According to (23), (24) and (27), the derivatives can therefore be written as

dR

dν
= −8κyR2

[

1− 2R
dη

dp

](

∂y

∂ν

)

p

(29)

and

dT

dν
= 8κyR2

[

1− 2(R + η)
dη

dp

](

∂y

∂ν

)

p

. (30)

(29) and (30) indicate that R and T are stationary with respect to the sweep frequency

at the point of zero-detuning of a nonlinear resonator y = 0, as for a linear device.

To evaluate the nature of the stationary point in each case we need to take a further

derivative and evaluate the result at y = 0. Differentiating (29) using the chain rule,

discarding terms proportional to y and noting that dp/dv = 0 at y = 0, we obtain
(

d2R

dν2

)

y=0

= −8κR2

[

1− 2R
dη

dp

](

∂y

∂ν

)2

p

(31)

(

d2T

dν2

)

y=0

= 8κR2

[

1− 2(R + η)
dη

dp

](

∂y

∂ν

)2

p

. (32)

(31) and (32) indicate that R is still minimised and T is maximised at zero realised

detuning provided the content of each square bracket is positive. Violation of the latter
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conditions requires nonlinear dissipation, because dη/dp would need to be significantly

different from zero.

(29) and (30) also show that R and T can also be stationary if the contents of

the square bracket in each expression are zero. Unlike for a linear resonator, we can

therefore no longer automatically assume that any stationary point in R and T is a

point of zero realised detuning. However, notice that the contents of the square bracket

can only be zero for one or other of (29) and (30) at any time. Therefore if R and T

are stationary simultaneously, or the phase is also zero, we can still identify the point

as corresponding to zero realised detuning.

Being able to identify the point of zero realised detuning using the conditions

above is particularly convenient for parameter extraction, even under highly nonlinear

conditions. Most obviously, we know that if the point of zero realised detuning is at

measurement frequency ν, then

νr(Pd) = ν. (33)

However, it follows from (17) and (18) with y = 0 that we can also calculate Qi(Pd) and

Pd from the S-parameters at the zero realised detuning point using

Qi(Pd)

Qc

=
−S11

1 + S11

=
1− S21

S21

(34)

and
Pd

Pr
= −2(S11 + |S11|2) = 2(S21 − |S21|2). (35)

Thus the internal quality factor and dissipated power follow from measurements of the

scattering parameters at the point of zero realised detuning, which are real, even for a

nonlinear device. This technique can be used to great effect (Section 8).

3.3. Other stationary points

It is instructive to consider the other cases where R and T can be stationary with

frequency, as these might, potentially, be confused experimentally with the case y = 0.

For both R and T , the only other circumstance when this can occur is when the contents

of the square brackets in (23) and (24) are zero. In the case of R, this requires

2p

η

dη

dp
= 1, (36)

which corresponds to the situation where the change in p/η due to the change in readout

frequency is cancelled out by the corresponding change in η due to nonlinear behaviour.

It is straightforward to show that for a simple power model given by η = αpn, (36) can

only be satisfied if n = 1. Furthermore, when n = 1 the condition is actually satisfied

for all p, and so R becomes independent of readout frequency. This behaviour would be

easily distinguished from the case where y = 0.

Similarly, in the case of T we require

1 + 2η − p

2η

dη

dp
= 0. (37)
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For the power law model used above, this condition can be satisfied at a spot power

p = p∗ where

p∗ =
n

√

n− 2

4α
, (38)

provided n > 2. However, the case where n > 2 is a very strong nonlinearity, which we

will see in Section 6.5 produces a high level of distortion of the resonance shape. As a

result, it is unlikely we would confuse a stationary point resulting from this effect with

one resulting from realising zero detuning.

3.4. Kinetic inductance

To this point the analysis has been general, making no assumptions about the origins of

the physical mechanisms that cause the resonant frequency and line width to depend on

readout power, and perhaps other variables such as temperature. In superconducting

films, kinetic inductance introduces a reactive nonlinearity. Kinetic inductance is the

circuit-theoretic representation of energy stored in the inertial motion of Cooper pairs.

It has the beneficial effect that distributed resonators based on superconducting films are

physically smaller than resonators based on normal metals. However, for large currents

I, the kinetic inductance is nonlinear:

L = L0

[

1 +

(

I

I∗1

)2

+

(

I

I∗2

)4

+ · · ·
]

, (39)

where I∗1 and I∗2 are scaling currents. This nonlinearity can be used to create

superconducting devices, such as travelling wave parametric amplifiers [32], but in the

context of resonators, it leads to a redistribution of frequency points on the resonance

circle, as shown by the green crosses in the left plot of Figure 2, and can cause hysteretic

switching, as shown in the right plot.

Strictly, the inclusion of nonlinear inductance leads to complicated periodic forms

for the voltage, current and inductance, but using the expression νr = (LC)−1/2; keeping

only the quadratic term in (39); concentrating on those spectral components that are

at the same frequency as the readout tone; and using the stored energy as a proxy for

the square of the average current; we find that

νr(U) = νr,0 [1− U/Uc,kin] , (40)

where νr,0 is the resonance frequency in the low-energy limit, and Uc,kin scales the size

of the nonlinear effect. Swenson’s model [29] assumes that the resonant frequency

decreases linearly with stored energy U , and has been found experimentally to

provide a good description of certain nonlinear reactive behaviour in superconducting

resonators [29, 33, 34]. The internal quality Qi is, according to the model, constant, and

so the system has only reactive nonlinearity. Substituting (40) into (7) and then Taylor

expanding assuming small U/Uc,kin, we find the detuning y, as defined by (8), becomes

y =
Qc[ν − νr(U)]

νr(U)
≈ y0 +

QcU

Uc,kin
= y0 +

QcQiPr

2πνr,0Uc,kin
p, (41)
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|S21|

Figure 4. Realised detuning y as a function of zero-power detuning y0; see also Figure

2 of Swenson [29]. Blue (solid) line shows the solution of (42) for a = 5 and the dotted

line y = y0 for comparison. Red arrows indicate the trajectory of the resonator in the

(y0, y)-plane when y0 is swept in the negative direction from a large, positive, starting

value. Dashed-green arrows show the opposing case where y0 is instead swept in the

positive direction from a large negative value. Lines with matching format in the inset

show the variation in |S21| with y0 in each case (Qt = Qc).

where y0 = Qcx0 is the applied detuning relative to νr,0, as defined by (20).

Not only does kinetic inductance redistribute the frequency points on the resonance

circle, it can cause hysteretic switching. One consequence is that a point of zero detuning

may not be found anywhere during a swept frequency measurement. We can illustrate

this effect as follows.

Using (17) to substitute for p, we obtain

y = y0 +
(1 + η)3a

(1 + η)2 + 4y2
, (42)

where a = Q3
tPr/πνr,0QcUc,kin is Swenson’s nonlinearity parameter in our notation. Note

that y as defined in Swenson’s paper [29] corresponds to y/(1 + η) in our formulation,

as they measure linewidths relative to Qt rather than Qc. For given applied detuning

y0, (42) can be solved to find the realised detuning y and entered into (9) and (10).

For values of a > 4
√
3/9 (Appendix A), y is not monotonic in y0 and different

resonant curves are obtained depending on whether the measurement frequency is swept

up or down. This is illustrated for a = 5 in Figure 4, which reproduces part of Figure 2

from [29]. When the readout frequency is swept up, the resonator follows the trajectory

in the (y0, y)-plane indicated by the dotted-green arrows. Critically, at y0 = (1 + η)u+
0
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the value of y jumps discontinuously from (1 + η)u+ to some higher value. Similarly,

when the readout frequency is swept down it follows the trajectory shown by the solid-

red arrows and y jumps discontinously from u− to some smaller value at y0 = y−0 . The

inset of Figure 4 shows the corresponding curves of |S21| versus y0/(1 + η).

It is possible for y to skip through the point of zero-detuning in one of these jumps;

whether it does so depends on the values of u+ and u−, as well as the value of u

afterwards. It can be seen from Figure 4 that the jump points correspond to stationary

points of y0 as a function of y. Taking the derivative of (42) with respect to y and then

setting dy/dy0 equal to zero, we find u+ and u− must satisfy

− 1

8a
=

u±

(1 + 4u2
±)

2
. (43)

Since the nonlinearity parameter is always positive, (43) implies that u+ and u− are

both always negative. Viewing Figure 4 from the perspective of y as a function of y0,

it is apparent that y is always guaranteed to pass through zero detuning (y = 0) on a

downward sweep from well above resonance: extrema then appear in the magnitudes of

the scattering parameters. However, on an upward sweep, the resonator may jump to a

positive or negative value of detuning, depending on the precise shape, and extrema will

only appear in the former case. Note that if instead the resonant frequency increases with

stored energy (e.g. as observed in the higher temperature data in [24]), this behaviour

would be reversed. The shape of measured hysteretic resonance curves therefore change

in specific ways, revealing key information about the underlying nonlinearities. Effects

of this kind are seen routinely in experimental resonance curves [29, 30, 33, 35]. Some

further useful results concerning the locations of the switching points are described in

Appendix A.

4. Two-level systems

In low-temperature superconducting resonators, two mechanisms are found to be

dominant sources of dissipative nonlinearity. The first relates to the presence of two-level

systems (TLS) in deposited bulk and unintended surface oxides (such as SiO2), and the

second relates to heating and pair breaking in the films that make up the transmission

lines.

TLSs occur in amorphous insulating materials where local configurational changes

in the atoms that make up the material lead to changes in stored mechanical energy.

According to the low-temperature TLS model, a system can tunnel between one

configurational state and another, introducing a new low-energy degree of freedom

into the dynamical behaviour [36–38]. The TLS model has been highly effective at

describing the low temperature behaviour of heat capacity, sound speed, and acoustic

attenuation. If, additionally, the TLSs have an electric dipole moment, they can

contribute significantly to the electromagnetic properties, leading to an enhanced

dielectric constant, which may have a dissipative part due to energy being carried away
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by elastic waves. TLSs have proven extremely successful at explaining empirical data

for detuning, loss and noise in thin-film superconducting resonators [39–43].

In most practical devices, the exact nature and locations of the TLSs are not

known, and it is usual to imagine some density of TLSs having an assumed energy

distribution. Detailed theoretical models exist for the real and imaginary parts of the

dielectric constant, but for our purposes the important features are as follows: (i) The

dielectric constant has two parts, one of which is due to the coupling of the TLSs to

the phonon system, which acts as a thermalising reservoir, and the other is caused by

resonant transitions between TLS states. (ii) The first relaxation process gives a complex

dielectric constant that is independent of field strength, and leads to damped linear-

resonator behaviour. (iii) The second resonant process has a real part that depends

only weakly on field strength, giving a weak reactive nonlinearity, and a lossy imaginary

part that depends strongly on field strength, giving a strong dissipative nonlinearity.

For a sufficiently strong field, the resonant energy states can be driven to have equal

populations, and the losses become zero. For parameterisation, it is sufficient to know

that

Q−1
tls =

Q−1
tls,min

√

1 + U/Uc,tls

, (44)

where U is the energy stored in the electric field, Uc,tls characterises the energy at which

the TLSs saturate, and Q−1
tls,min characterises the maximum power loss. This expression

should be compared with the functional form in (40), where Uc,kin characterises the

energy at which nonlinear inductance starts to become significant. In resonators of

practical importance Uc,kin > Uc,tls, allowing for some intermediate range of readout

power where linear resonator behaviour can be found. This is usually regarded as the

‘sweet spot’, Uc,kin > U > Uc,tls, for device operation.

In (44) U can be replaced by either the internal resonator power Pint = 2πνrU

(different to Pr or Pd) [41] or the square |E|2 of some measure E of the electric field

strength in the capacitive part of the resonator [44]. All three forms of (44) are

equivalent, but we choose to work with U because it can be defined in a geometry

independent manner, with all details of the design of the device absorbed into Uc,tls.

Consider a resonator where TLSs are the only source of nonlinearity. Using the

definition of the internal quality factor,

U = Qi
Pd

2πνr
, (45)

and (17), it can be shown that the total energy U stored in the resonator is

U =
2Q2

t

Qc

1

1 + (2Qtx)2
Pr

2πνr
, (46)

where Pr is the incident readout power. This expression is true for both the series

and shunt single-pole resonant circuits. It is immediately obvious from (44) and (46)

that Qtls depends on Pr. However, the functional form of the relationship is difficult to

obtain. (46) cannot simply be used to calculate U as an input to (44), as Qt is itself
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a function of Qtls. The two equations must instead be solved as a pair of nonlinear

simultaneous equations.

Experimental studies to verify (44) have avoided this difficulty by exploiting the

fact that the value of Qt measured to calculate Qtls can be used to convert Pr to U (or

actually usually Pint) [41, 44]. However, there are many situations where is it valuable to

calculate Qt as a function of Pr, for example when explaining experimental data directly

or when designing a device. To our knowledge this problem has not been addressed in

the literature, so we will do so in the next section.

4.1. Large signal model and numerical solution

Assume that the nonlinear behaviour of TLSs only affects the dissipative response of

the resonator, so the detuning x is fixed. Using (44), the total resonator quality factor

is

Q−1
t = Q−1

c +Q−1
i,max +Q−1

tls,min/
√
1 + u, (47)

where u = U/Uc,tls andQ−1
i,max represents any other sources of internal loss that ultimately

limit the achievable quality factor. It is convenient to rewrite (47) in the form

Qt =
Qt,min

1− rα
, (48)

where Qt,min = (Q−1
c +Q−1

i,max+Q−1
tls,min)

−1 and Qt,max = (Q−1
c +Q−1

i,max)
−1 are, respectively,

the smallest and largest valuesQt can take, r = Qt,min/Qtls,min = (Qt,max−Qt,min)/Qt,max,

and

α = 1− 1√
1 + u

(49)

measures the state of the TLS system under applied power. 0 ≤ r, α ≤ 1 by definition.

α = 0 and 1 correspond to the limits where the TLSs are fully unsaturated and saturated,

respectively. To determine the steady-state behaviour, we must solve for α at the readout

power level given known x, r, νr, Qc and Qt,min.

Substituting (46) into (49), we find that the determination of α can be posed as

the fixed-point problem

α = f(α) (50)

for

f(α) = 1− (1− rα)
√

(1− rα)2 + χ(α)ξtls
, (51)

where

ξtls =
Pr

Pc,tls

, (52)

is a dimensionless nonlinearity parameter,

Pc,tls =
πνrQcUc,tls

Q2
t,min

(53)
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Figure 5. Plot of α, which characterises the state of the TLS system in our

formulation, as a function of ξtls for different values of the ratio r = Qt,min/Qtls,min.

Zero detuning is assumed.

is a scale power and

χ(α) =
(1− rα)2

(1− rα)2 + (2Qt,minx)2
(54)

is the quantity normally referred to as the detuning efficiency [21].

By definition, ξtls ≥ 0 and 0 ≤ χ ≤ 1. The advantage of putting the problem in this

form is that certain fixed-point theorems can be applied to its solution. A full discussion

is given in Appendix B, but the key results can be summarised as follows. First, we

can show that (50) always has one unique solution satisfying the physical constraint

0 < α < 1, which precludes the existence of hysteretic effects due to the action of TLS

alone. Second, we can show that the iterative sequence defined by

αn+1 = f(αn) (55)

always converges to this solution in the limit n → ∞ provided the sequence is started

from a0 = 0+.

4.2. Simulated behaviour

Figure 5 shows calculated curves of α versus ξtls for a range of values of r at zero detuning

(x = 0). It can be seen that α becomes an increasingly sharp step-like function as r → 1,

which corresponds to the physical limit where TLS loss dominates internal loss at low

power. The step change in α occurs at ξtls = 1, or equivalently, using (52), when the

readout power level is near the critical power level Pc,tls.

The implications for device behaviour can be seen in Figure 6, which shows

calculated values of Qt/Qc (blue solid line, left y-axis) and resonance depth (red dashed
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Figure 6. Qt/Qc (blue solid line, left-hand y-axis) and transmission at zero-detuning

in dB (red dashed line, right-hand y-axis) as function of ξtls. Qc = Qi,max = 105 and

Qtls,min = 103 (r = 0.98).

line, right y-axis) as function of ξtls for x = 0. The assumed values of the various

Q-factors are given in the figure caption and r ≈ 0.98. The sharp increase in α at

ξtls ≈ 1 leads to a rapid increase in Qt/Qc when the readout power is raised above some

threshold value. Equivalently, this can be seen as a very rapid increase in the depth

of the resonance from nearly 0 dB to -6 dB over an order of magnitude change in ξtls
(or, equivalently, applied readout power). Under certain experimental conditions this

behaviour gives rise to a ‘switch-on’ effect: the resonator is obscured by the noise floor

of the system and appears absent until the readout power is increased above a threshold,

at which point the depth increases rapidly and the resonance curve ‘turns on’.

This switch-on behaviour and associated distortion is illustrated in Figure 7, which

shows calculated resonance curves for different values of ξtls assuming the same device

parameters as in Figure 6. The cases ξtls = 0.1 (magenta line) and 103 (red line)

correspond to the limits where the TLS are fully unsaturated and fully saturated,

respectively (as can be seen from Figure 6). In the case ξtls = 0.1, the resonance

curve is too shallow to be seen on the graph scales we have used. In these regimes the

behaviour of the amplitude and phase as a function of frequency is indistinguishable

from that of a linear device, as we will see explicitly when we consider the resonance

curves in the Argand plane.

For ξtls = 2 (green line), the TLS are just starting to saturate and the resonance

curve becomes visible. The solid blue lines show the components of S21 for what is

effectively the mid-point in the saturation process: ξtls = 7. The dashed cyan line shows

the ideal linear response calculated using (10) and a value of Qt calculated from the

depth of the fully modelled response for the green line at zero detuning. As can be



Nonlinear Effects in Superconducting Thin Film Microwave Resonators 23

−6

−4

−2

0

|S
2
1
|
(d
B
)

−4 −2 0 2 4
Qt,maxx

−20

−10

0

10

20
A
rg
[S

2
1
]
(d
eg
)

Figure 7. Resonance curves as a function of ξtls for the same resonator parameters

as Figure 6. The solid lines show data from the full model, showing the resonance

deepening as ξtls increases. The values of ξtls for the different lines are as follows:

ξtls = 0.1 (magenta); ξtls = 2 (green); ξtls = 7 (blue); and ξtls = 1000 (red). The

dashed cyan line shows the response of a linear device, with Qt/Qc chosen to match

that of the nonlinear device at zero detuning in the case ξtls = 7.

seen, the dashed curves fall off more slowly then the full model, which is consistent with

a reduction in Q in the full model as the energy stored in the resonator falls and the

saturation state of the TLSs decreases. Even in this worst case regime, the distortion

in amplitude is relatively slight, although there is a stronger effect in the phase. Such

distortion may still affect the fitting of (10) to experimental curves; in particular, we

might expect a good fit to either the width or depth, but not both simultaneously.

The distortion of the resonance curve is most apparent in the Argand plane. Figure

8 shows calculated response in the Argand plane, using the same parameters and

colours of Figure 7. The resonance curves form circles when the TLSs are either fully

unsaturated or saturated throughout the frequency sweep, but in the intermediate range

(ξtls = 2 and ξtls = 7) a ‘teardrop’ shape is seen. The formation of this teardrop shape is

a result of Qtls, and therefore the radius of the resonance circle (Section 2.5), decreasing

rapidly as the measurement signal is tuned off resonance and the energy stored in the

resonator decreases.

Figure 9 shows a set of measured data displaying these characteristic teardrop

shapes. The device under test was a microstrip ring resonator with a 2µm wide, 400 nm

thick, Nb trace, a 500 nm thick SiO2 dielectric layer and a 150 nm thick Nb ground plane

(Nb Tc measured as 8K). These measurements were made at 100mK with the device

operating as a half-wave transmission resonator. The device also displays the striking

‘switch-on’ effect described earlier: the resonance ‘circle’ transitions from being obscured
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Figure 8. Resonance ‘circles’ as a function of ξtls for the same resonator parameters

as Figure 7. Solid lines show modelled response, while the dashed lines show the

corresponding circles assuming the Q-factors measured on resonance. The values of

ξtls for the different lines are as follows: ξtls = 1000 (red); ξtls = 7 (blue); ξtls = 2

(green); and ξtls = 0.1 (magenta)
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Figure 9. Nb/SiO2/Nb microstrip resonator measurements that demonstrate the

behaviour illustrated in Figure 8. The different colours indicate different readout

power levels. In each case the crosses indicate measured data points and lines of

matching colour have been drawn between them for emphasis. The applied readout

power increases in 10 dBm increments going from red to green, green to orange and

orange to blue.
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by the noise (red data) to clearly visible (orange data) over a 20 dB readout power range.

The behaviour illustrated in Figure 8 is typical of several micostrip devices we have

fabricated in different metals and indicates a large TLS population in the sputtered

SiO2.

5. Quasiparticle heating

In superconducting resonators, Ohmic dissipated readout power can have a marked effect

on resonance curves, even when the readout frequency is well below the pair-breaking

energy gap of the material. Multiple sequential photon absorption events, starting with

a thermal population, can pump the quasiparticle system into a highly non-equilibrium

state, which loses energy to the phonon system of the underlying material. The

application of readout power affects both the energy distribution of the quasiparticles

and their number density. The complex processes by which the quasiparticle and phonon

energy spectra are modified in the presence of sub-gap photons have been studied

at the microscopic level by Goldie [45], and the predictions have subsequently been

found to be in excellent agreement with experimental results [24]. In the context of

resonator dynamics, a key observation is that the consequential macroscopic behaviour

can be described by a reduced model where the quasiparticles are ascribed an effective

temperature above their physical temperature. The power dissipated by the readout

signal effectively heats the quasiparticles [30], and an equilibrium state is formed when

the heating power is balanced by the cooling power flow to the phonons [45, 46]. This

electrothermal model has been used to account for both large-signal [30, 31] and small-

signal [47] device behaviour.

Here we introduce an alternate, but equivalent, macroscopic model based on the

Rothwarf-Taylor equations [48], which replaces the effective temperature with the total

quasiparticle number. We will show this model is closely related to the electrothermal

model, but is advantageous for our application because it allows approximate forms for

Qi as a function of Pr to be obtained easily for comparison with experimental results.

5.1. Description of the model

Our primary aim is to calculate how the internal quality factor Qqp varies with applied

readout power. In the limit where the operating temperature is well below the critical

temperature of the superconductor Tc (usually taken as T/Tc < 0.1), and the resonant

frequency is well below the pair-breaking frequency, Mattis-Bardeen theory predicts Qqp

to be inversely proportional to the number density of quasiparticles nqp in the active

part of the resonator (see Appendix C for proof, also noted by McCarrick [33]). For our

purposes, it will be convenient to express this relationship in the form

Qqp =
n∗Qc

nqp

. (56)

The scaling factor n∗ absorbs the effects of temperature, frequency and resonator

geometry, and can be recognised as the quasiparticle density at which Qqp = Qc.
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Choosing Qc as the characteristic scale for Qqp will be advantageous later when we

consider how the actual power dissipated in the resonator relates to the applied readout

power Pr.

The ‘active part’ of the resonator in this context is determined by the current

distribution. By definition, (3), Qqp is inversely proportional to the total Ohmic power

dissipation in certain volumes, V1, V2, . . . VN , of the superconducting device. In the

temperature-frequency range of interest, the resistivity of a superconductor is small and

approximately proportional to the local quasiparticle density (Appendix C). Hence we

expect

Qqp ∝
N
∑

i=1

∫

Vi

nqp|J|2dτ (57)

where J is the local induced current density and
∫

Vi
. . . dτ denotes the volume integral

over Vi. (57) indicates Qqp will be predominantly determined by nqp in the region

of highest current density; for example, nearest the shorted end of a quarter-wave

resonator. Similarly, most of the power will be dissipated in the same region.

Consequently, it is sufficient to only consider the evolution of nqp in high-current regions

when determining Qqp to first order.

To determine how nqp depends on Pr, our starting point is the Rothwarf-Taylor

equations [48] in the form

dnqp

dt
=

2

τpb
nω − R0n

2
qp (58)

dnω

dt
= − 1

τpb
nω +

R0

2
n2
qp −

1

τl
[nω − nω,th] + Γr. (59)

nqp is the number density of quasiparticles in the active volume of the resonator, nω is

the number density of pair-breaking phonons in the same volume, and nω,th is the value

of nω in thermal equilibrium, Γr = 0 (no forcing). τpb is the pair-breaking time, R0

is the quasiparticle recombination rate and τl is the lifetime of a pair-breaking phonon

in the absence of interactions with the quasiparticle system. Γr is the rate at which

pair-breaking phonons are generated by the readout signal.

We are interested in the steady-state behaviour, and so we set ∂tnqp and ∂tnω equal

to zero. (59) can then be used to eliminate nω in (58), and we find the steady-state

value of nqp must satisfy

R0n
2
qp =

2τl
τpb

[

Γr +
1

τl
nω,th

]

. (60)

A further simplification is possible if recognise that nqp must be equal to the expected

value thermal nqp,th when Γr = 0, so 2nω,th/τl = R0n
2
qp,th. (60) can therefore be re-

expressed as

R0

[

n2
qp − n2

qp,th

]

=
2τl
τpb

Γr, (61)
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where it has been shown that

nqp,th = 2N0

√

2πkbT∆e−∆/kbT , (62)

where T , ∆ and N0 are respectively the temperature, gap energy and single spin density

of states at the Fermi surface of the superconductor [47].

As of yet we have not said anything about how the generation rate is related to

quasiparticle number density and readout power. As a first approximation, we assume

Γr ≈
ǫrPqp

V
, (63)

where Pqp is the total power dissipated in the quasiparticle system, V is the volume of

the active part of the resonator and ǫr is a generation efficiency.

To relate Pqp to the applied readout power Pr, we must consider both the effects of

the resonator circuit and the division of power between the different loss mechanisms.

Let

Q−1
i = Q−1

qp +Q−1
other, (64)

where Qother collects together all other internal losses in the resonator. By definition,

Pqp =
Qi

Qqp

Pd (65)

where Pd is the total power dissipated in the resonator given by

Pd =
2QiQc

(Qi +Qc)2
1

1 + (2Qtx)2
Pr. (66)

Due to the way in which experimental data is often taken, we assume x = 0 in the

subsequent analysis. However, it is also straightforward to apply the model for finite x

and to also account for distortion caused by the resonant frequency changing with nqp

(δx ∝ n−1
qp ), but we shall not do so here.

Combining (63)–(66),

Γr =
Q−1

qpQ
−1
c

(Q−1
other +Q−1

qp +Q−1
c )2

2ǫrPr

V
. (67)

(56) can be used to rewrite (67) in terms of quasiparticle number densities instead of

quality factors. Doing so, and substituting the result into (61), yields

R0

[

n2
qp − n2

qp,th

]

=
4ǫrτlPr

τpbV

n∗nqp

(n∗ [1 +Qc/Qother] + nqp)2
, (68)

which must be solved to find nqp in equilibrium. (68) can be rearranged into a quartic

equation in nqp, and must generally be solved numerically, as will be discussed in

subsequent sections. However, first consider the relationship between this model and

previous models of quasiparticle heating in superconducting resonators.
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5.2. Relation to effective temperature models

(60) suggests that the dynamics of nqp near equilibrium can be described by the rate

equation

dnqp

dt
≈ 2τl

τpb
Γr −R0

[

n2
qp − n2

qp,th

]

, (69)

with the implication being that recombination dominates the loss mechanisms. For

operating temperature T0 well below the critical temperature of the superconductor

and small enough nqp, the total energy Uqp of the quasiparticle system is ≈ nqpV∆:

see Thomas [47]. Further, let us use (62) to assign an effective temperature Tqp to

the quasiparticles which makes the expected thermal value equal to the nonequilibrium

value nqp. Multiplying (69) through by V∆ and using (62) to replace nqp and nqp,th with

expressions in terms of effective temperatures results in the energy balance equation

dUqp

dt
= Pin − κ2

0

[

Tqpe
−2∆/kbTqp − T0e

−2∆/kbT0
]

(70)

for Pin = 2τlΓr∆/τpb and κ0 = 2R0n0V
√
2πkb∆2. (70) reproduces the effective

temperature and superconducting cooling curve model developed in the series of papers

[30, 31, 45–47]. The model introduced in this paper can therefore be viewed as a

reformulation of the existing microscopic electrothermal model, but the approach taken

here is favoured because it simplifies some of the subsequent mathematics.

It is interesting also to compare the model proposed here with that from Section

5.6.4 of Zmuidzinas [21]. His model is based on the empirical observation that the

quasiparticle relaxation time τ saturates at τmax as T/Tc is reduced. Given an assumed

dependence

τ =
τmax

1 + nqp/nτ
, (71)

Zmuidzinas derives, in our notation, a total generation rate

Γ =
2τl
τpb

Γr −R0

[

n2
qp − n2

qp,th

]

− R0nτ [nqp − nqp,th] , (72)

where nττmax = 1/R0. This differs from the total generation rate in (69) by the term

linear in nqp, so we expect the models to diverge in the regime nqp ≈ nqp,th. Since we

will be mainly concerned with the regime where nqp ≫ nqp,th, we will not dwell on this

difference. However, in Section 5.4 will show that in our model nqp,th limits at nqp,min

as the temperature is reduced, as a result of readout power heating. This gives rise to

the behaviour described by (71), without the need to impose a limited relaxation time.

5.3. Full solution

(68) can be rewritten as the quartic equation

0 = n4 + 2
(

1 + q−1
other

)

n3 +
[

(

1 + q−1
other

)2 − q−2
qp,th

]

n2 (73)

−
[

2q−2
qp,th

(

1 + q−1
other

)

+ Pr/Pc,qp

]

n− q−2
qp,th

(

1 + q−1
other

)2
(74)
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Figure 10. Plot of qi as a function of Pr/Pc,qp, as found by solving (73). The dashed

(red) lines show the effect of reducing the thermal quasiparticle density when other

losses are fixed and small (qother = 106). As the dash length increases, qqp,th increases

through the sequence of values 0.1, 1, 10 and 100. The dot-dash (blue) lines show the

case where qqp,th = 100 and qother increases from 0.1 (short dashes) to 1 (long dashes).

The solid (green) shows the case where qqp,th = qother = 107, i.e. losses from both

mechanisms are small at low powers.

for normalised variables n = nqp/n∗ and qqp,th = Qqp,th/Qc, where Qqp,th = n∗Qc/nqp,th

is the quality factor expected from thermal quasiparticles alone and

Pc,qp = τpbn
2
∗R0V/4ǫrτl (75)

is a scaling power. (73) can be solved numerically using a root-finding algorithm and

selecting for the roots that satisfy the physical requirements that n must be real and

greater than or equal to zero. In all the simulations described here, this procedure

yielded a single solution.

Figure 10 shows calculated values of qi as a function of Pr/Pc,qp for a range of values

of Qqp,th and Qother. For readout powers well above Pc,qp, all the curves lie on top of each

other. In this regime the behaviour is dominated by the population of quasiparticles

excited by the readout power, and so differences in other losses or thermal quasiparticle

number have no influence. As the power is reduced, each continues along a common path

until Qi saturates at the smaller of either Qqp,th or Qother, with no apparent difference

in the shape of the curve depending on the source of the limiting value. In the sections

that follow we will derive simplified forms for Qqp as a function of applied readout power

in a number of relevant cases.
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5.4. Behaviour of an over-coupled device

Qc ≪ Qi for an overcoupled device. This requires nqp ≪ n∗ if quasiparticle losses

dominate the internal losses in the resonator, which follows from (56). (68) can then be

approximated by

R0

[

n2
qp − n2

qp,th

]

=
2ǫrτlPr

τpbV

nqp

n∗
, (76)

which can be rearranged into a quadratic equation in nqp and solved analytically. Only

the solution

nqp =
nqp,min

2
+

√

(nqp,min

2

)2

+ n2
qp,th (77)

nqp,min =
4ητlPr

τpbn∗V R0

(78)

satisfies the physical requirement that nqp ≥ 0.

(77) indicates that nqp will not decrease indefinitely as device temperature is

reduced in the presence of a readout signal. Instead it reaches a minimum value nqp,min

corresponding to an excess population maintained by readout power dissipated in the

device. At first this may seem counter-intuitive; if the losses are decreased to zero,

where does the dissipated power to both initiate and then maintain this population

come from? The answer is the influence of the resonator circuit. The right-hand side

of (76) indicates the electrical behaviour of the resonator provides positive feedback in

the overcoupled-limit: a small increase in nqp produces an increase in generation rate,

tending to further increase nqp. Consequently, the generation of a few quasiparticles –for

example, by a noise process or optical event– is sufficient to start the process. The loss

from this process then provides sufficient dissipated power to sustain the population.

5.5. Behaviour of an under-coupled device

A device is under-coupled if Qi ≪ Qc. If quasiparticles again dominate the internal loss

in the resonator, (56) now requires nqp ≫ n∗ and (68) can be approximated by

R0

[

n2
qp − n2

qp,th

]

=
2ǫrτlPr

τpbV

n∗

nqp
. (79)

The quasiparticle term on the right-hand side is inverted compared with the over-coupled

case, (76), and so the resonator power provides negative feedback: an increase in nqp

reduces the rate at which quasiparticles are generated.

(79) can be rearranged into a cubic equation and an analytic solution is possible,

however we will make a further simplification. We will assume nqp ≫ nqp,th, which

would correspond experimentally to the case where the measured Qi is much smaller

than would be predicted on the basis of an assumed thermal population of quasiparticles.

We therefore approximate n2
qp − n2

qp,th ≈ n2
qp, in which case (79) yields

nqp =

(

2ǫrτln∗Pr

τpbR0V

)1/3

. (80)
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Figure 11. Measured values of normalised internal quality factor Qi/Qc = qi as a

function of applied readout power for NbN-SiO2 microstrip resonators in the regime

where quasiparticle heating is expected. Device geometry is described in Section 5.6.

The blue circles and green triangles show data for devices with measured coupling

quality factors of 3.6 × 104 and 1.4 × 105 respectively. The red and magenta dashed

lines show fits of (81) to the green triangles and blue circles respectively, with the

intercept as a free variable. The dashed orange line shows a fit of a model where

Qi ∝ 1/Pr to the blue circles for powers below -70 dBm.

Substituting (80) and Pr = GPVNA into (56) and taking the logarithm of the result, we

obtain the prediction

log10Qi =
1

30
log10

(

2ητln∗G

τpbR0V
× 1 [mW]

)

− 1

30
PVNA [dBm] , (81)

which may be readily compared with experimental data.

5.6. Comparison with experiment

Figure 11 shows measurements of the normalised internal quality factor as a function of

readout power of two superconducting resonators in a regime where quasiparticle heating

is expected. In both devices the resonator is a quarter-wave length of superconducting

microstrip. One end of this line is shorted, and the other is lightly capacitively to a

readout line, yielding a circuit similar to the top panel of Figure 1. The microstrip

comprises a 2.5µm wide and 200 nm thick, reactively sputtered, NbN ground plane,

550 nm thick RF sputtered SiO2 dielectric layer and a 400 nm thick NbN ground plane.

Measurements on a monitor sample from the depositions indicate the resistivity of the

NbN is approximately 300µΩcm, and the superconducting critical temperature 10.8K.

The devices were from two chips designed to differ in coupling strength; Qc was measured

as 3.6×104 for the device represented by the blue circles and 1.4×105 for that represented
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by the green triangles. The measurements were taken at 100mK using the method

described in Section 8. VNA power is a proportional measure of the readout power Pr

applied at the device.

Both devices showed significant TLS loss at low readout powers due to the SiO2,

as discussed in Section 4.2. Since the emphasis in this section is quasiparticle heating

effects, we have only shown the data for the high readout power regime where Qi is

seen to fall with increasing readout power. However, both devices also showed the TLS

‘switch-on’ behaviour illustrated in Figure 6 in the power range below -80 dBm. As a

result, we are confident that the TLS are saturated in the power range shown in Figure

11, and therefore that the observed behaviour is due to quasiparticle heating alone.

The device with the lower value of Qc (green triangles) is under-coupled at even

the lowest readout powers and should, therefore, be in the regime discussed in Section

5.5. The dashed red line in Figure 11 shows a fit of the straight-line model (81) to the

corresponding data with the intercept as a free variable. The model can indeed be seen

to provide a good account of the behaviour of qi with readout power. As an additional

test, we also attempted fitting both the gradient and intercept simultaneously using

linear regression. This gave a value for the reciprocal of the gradient of 26±0.3 dBm,

which is close to but slightly below the value 30 dBm in (81). However, this is consistent

with the fact the gradient of 1/30 dBm−1 is the limit for very high powers and that the

actual gradient approaches it from above, as shown in Figure 10.

There is a kink in the data for this device near -70 dBm. In this power range a

small subsidiary feature formed on the main resonance curve. As the readout power

was increased, the feature translated downwards in frequency through resonance and

eventually left the resonator bandwidth. However, as it did so it interfered with the

resonance depth measurement used to infer Qt, producing the kink. This behaviour was

fully repeatable on cycling the power. The cause of the feature is uncertain, but similar

effects can generated by reactive non-linearities [49], and have also been attributed to

superconducting weak-links in NbN devices [50].

The device with the higher value of Qc (blue circles) starts in the critically coupled

regime, intermediate between the results of Sections 5.4 and 5.5. Consequently, there

is no simplified expression to fit to the data. However, we see that the data shows the

concave feature expected near Qi = Qc from Figure 10. In addition, it is possible to

make approximate fits of the results from Sections 5.4 and 5.5 at the corresponding

limits of the data range. The dashed orange line shows a fit of the expected behaviour

in the over-coupled limit, Qi ∝ Pr−1, to the blue/circular data points in the range -75

– -70 dBm. Similarly, the dashed purple line shows a fit of the expected behaviour in

the under-coupled limit, Qi ∝ Pr−1/3, to the blue/circular data points above -60 dBm.

The agreement between the models and data can be seen to be good to the level of

approximation involved, with the data transitioning between the limit lines as expected.

The discussion above already indicates the quasiparticle heating model gives a

reasonable account of the behaviour of each device individually. However, we can go

further and relate the values measured between devices. The behaviour shown in Figure
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10 is universal, therefore any horizontal offset between the two sets of points in Figure

11 should result purely from the difference in the scaling powers Pc,qp of the devices.

Given they are of similar design and composition, (75) indicates the ratio of the scaling

powers should be proportional to the ratio of n2
∗ for the two devices. However, by

definition n∗ is inversely proportional to Qc under the same conditions. Consequently,

given the measured values of Qc we should expect Pc,tls for the strongly coupled device

(blue circles) to be approximately fifteen times that for the more weakly coupled device

(green triangles). In turn, this translates into a predicted shift of 12 dB between the

two datasets in Figure 11 at similar values of Qi/Qc. As can be seen, this is a very good

description of what is actually observed.

6. Power law models

6.1. Model and method of solution

In previous sections, we considered the effects of TLS and quasiparticle heating. For

these specific mechanisms we are able to calculate the functional form of the quality

factor with respect to dissipated power, and explain what was seen experimentally.

Often, however, we are in the converse situation: we have measured a set of distorted

resonance curves and we would like to determine, or at least infer, the functional form

of the underlying physical process. In this section, we will describe a power-law model,

which helps to develop an intuition for functional forms that produce specific shapes in

distorted resonance circles.

Let Qi be decomposed into a power-independent contribution Qother and a

contribution Qnl from nonlinear dissipative processes, where

Q−1
i = Q−1

other +Q−1
nl . (82)

Now assume that Qnl has a simple power-law form, dependent on the power Pnl

dissipated by the nonlinear process:

Qnl = Qc

(

Pc,nl

Pnl

)n/d

, (83)

where n and d are positive integers (meaning that the exponent is always a rational

number) and Pc,nl is a parameter that determines the readout power level at which any

nonlinear behaviour is seen. In physical terms, this model describes a process where the

dissipation increases with dissipated power; heating, for example.

We have assumed that Qnl depends directly on Pnl rather than the total power

dissipated in the device, Pd, because this condition is expected to be more reflective of

real processes. For example, consider the quasiparticle heating model of Section 5. In

this case, sub-gap readout photons are able to indirectly break pairs because the power

Pqp dissipated in the quasiparticle system is reprocessed into pair-breaking phonons.

Breaking pairs increases the quasiparticle number, which in turn increases dissipation

and decreases Qqp; hence Qqp decreases with Pnl. However, we would not expect power
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dissipated in the dielectric or elsewhere to have the same effect (at least in the absence of

significant heating). Thus the correct dependence is Qqp(Pqp) in this case, not Qqp(Pd).

A counter example, would be if a device is poorly thermally anchored to its refrigerator,

and then all of the dissipated power would lead to a change in temperature, and loss.

The value of Pnl at a given value of y and Pr can be found as follows. From

(3) it follows that Pnl is related to the total power dissipated in the resonator by

Pnl = QiPd/Qnl, and so using (17) and the notation of previous sections,

Pnl =
2q−1

nl

(1 + q−1
i )2 + (2y)2

Pr. (84)

In the steady state, Pnl must satisfy (84) for Qi given by (82) and (83). This condition

can be expressed as the fixed point problem

ρ = h(ρ), (85)

where ρ = Pnl/Pc,nl, ρr = Pr/Pc,nl and

h(x) =
2ρrx

n/d

(1 + q−1
other + xn/d)2 + (2y)2

, (86)

which provides a way of calculating a set of possible values of Pnl.

Although we could solve (85) by iteration, as in Section 4.1, here there is a better

alternative. The condition x = h(x) can be rearranged into the form

κ(2n+d) + [(1 + q−1
other)

2 + (2y)2]κd + 2(1 + q−1
other)κ

n+d − 2ρrκ
n = 0 (87)

where κ = x1/d. It can now be seen that the fixed points of h(x) correspond to the nth

powers of the roots of the polynomial in κ on the left-hand side of (87). As a result the

full set of fixed points can be quickly found using a polynomial root-finding algorithm,

which are common in mathematical software packages. It also follows that h(x) has at

most 2n+ d unique fixed points.

Given the set of fixed points, how can we determine which corresponds to the

realised value of ρ? As a first step, fixed points that correspond to unphysical solutions

can be eliminated: as a normalised power, ρ must be purely real and greater than

or equal to zero. If multiple possibilities remain, which fixed point is realised at the

operating point will depend on the stability of the corresponding state and the history

of the device. Unstable states will not be realised in practice. If multiple stable states

remain, then how the device has been prepared becomes important. For example, when

a parameter is being swept, each time it changes the resonator will tend to move to

which ever of the new states is closest to its previous state with respect to Pnl.

Normally the stability of a state would be assessed in relation to some potential

equation in the underlying physical model. This is not possible here, and so we adopt as

our stability condition the requirement that the iterative sequence xn+1 = h(xn) started

near enough the fixed point x = x0 will converge to x0 as n tends to infinity. The

physical motivation is that the iterative process mirrors how the resonator will move to

the new operating point when a parameter is changed, or, perhaps more importantly,
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how it will move back to the state if perturbed from it. The only difference is that, in

reality, the process is continuous and limited by the dynamical times of the resonator.

The stability condition is equivalent to requiring |h′(x)| < 1 for x0−δ− < x < x0+δ+
for some δ− and δ+ > 0, where x0 is the fixed point and h′(x) = dh/dx. As a result,

it is impossible for the fixed point to correspond to a stable solution if |h′(x0)| ≥ 1.

Differentiating (86), it is straightforward to show

h′(x0) =























[

1− (1+q−1
other

+x
n/d
0 )x0

2ρr

]

n
d

x0 6= 0

0 x0 = 0 and n > d
2ρr

(1+q−1
other

)2+(2y)2
x0 = 0 and n = d

→ O(∞) x0 → 0 and n < d.

(88)

We see that ρ = 0 is never a stable state for finite ρr if n < d. As far as we can tell,

h(x) is a relatively well behaved function for n ≥ d, so we make the assumption it is

sufficiently smooth that if |h′(x0)| < 1 we can also find a small region around x0 for

which |h′(x)| is also < 1. Hence the stability conditions become: i) If x0 6= 0, stability

requires
∣

∣

∣

∣

∣

1− (1 + q−1
other + x

n/d
0 )x0

2ρr

∣

∣

∣

∣

∣

n

d
< 1. (89)

ii) If x0 = 0 and n > d then x0 always corresponds to a stable state. iii) If x0 = 0 and

n = d, then for stability requires

2ρr < (1 + q−1
other)

2 + (2y)2. (90)

iv) If x0 = 0 and n < d, the corresponding state is always unstable.

Finally, it is useful to consider the limiting behaviour of the model when y = 0 and

ρr → ∞. This is relevant to measurements of resonance depth as a function of applied

readout power. In this limit we expect xn/d near the solution to be sufficiently large

compared with other terms that we can make the approximation

h(x) ≈ 2ρr
xn/d

, (91)

in which case

ρ ≈ (2ρr)
d/(n+d). (92)

The resulting expression for the depth of the resonance is

|1− S21(y = 0)| ≈ (2ρr)
−d/(n+d), (93)

which is a simple power law.

6.2. Power law exponent less than one

Figures 12(a) and 12(b) show simulated resonance ‘circles’ in the Argand plane resulting

from frequency sweeps at different readout power levels, for n/d = 1/3 and n/d = 1/2

with qother = 108. These illustrate typical behaviour when n/d < 1. In both cases, the
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Figure 12. Distorted resonance circles calculated using the model of Section 6.1. (a)

shows the behaviour for n = 1, d = 3 and qother = 108. ρr = 1/44 = 0.0039 for

the orange line and quadruples between lines as the circles get smaller, terminating in

ρr = 4 for the pink line. (b) shows the behaviour for n = 1, d = 2 and qother = 108.

ρr = 1/24 = 0.0625 for the orange line and doubles between lines as the circles get

smaller, terminating in ρr = 8 for the yellow line. Note that the range of values of

ρr shown is larger than in (a), i.e. the circle shrinks less rapidly as the applied power

is increased. In both plots the dashed black line shows a circle of radius 0.5 centered

on S21 = 0.5, which would be the expected behaviour of a highly over-coupled device

(qi >> 1).

size of the resonance circle is observed to decrease with applied readout power. At high

powers the trajectory becomes distinctly non-circular and it is evident that it would

not be possible to fit a single-pole model with fixed qi to the data. Decreasing d is

observed to have two effects. First, we see that the rate at which the size of the circle

shrinks increases; in Figure 12(a) the difference in ρr between neighbouring lines is a

factor of four, while in Figure 12(b) it is only a factor of two. This is consistent with

(93). Second, the circle is seen to become more asymmetric. Finally, we draw attention

to the fact that at high powers the radius of the circle is reduced at even high values of

y. This is a result of the fact the solution ρ = 0 is always unstable for n/d1. As we will

see shortly, the behaviour is very different when n/d > 1.

6.3. Power law exponent equal to one

In the case n = d, yielding Qnl ∝ Pnl, the model has an analytic solution. (87) reduces

to the cubic equation
{

ρ2 + 2(1 + q−1
other)ρ+ [(1 + q−1

other)
2 + (2y)2 − 2ρr]

}

ρ = 0, (94)

with up to three unique solutions. As factored it can be immediately seen that one
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solution is ρ = 0. The other two solutions, ρ = ρ+ and ρ = ρ−, follow by solving the

quadratic equation that results when the contents of the parentheses is set equal to zero,

yielding

ρ± = −(1 + q−1
other)±

√

2ρr − (2y)2. (95)

Of the three solutions, only ρ = 0 and ρ = ρ+ correspond to possible physical states

as ρ− is negative for all ρr and y. Further, ρ+ is only positive if ρr is greater than a

threshold power ρt, where

2ρt = (1 + q−1
other)

2 + (2y)2. (96)

Following the stability analysis of the previous section, (90), it is straightforward to

show that ρt also corresponds to the power threshold for ρr at which the solution ρ = 0

transitions from being stable state to an unstable state. Hence we might expect ρ = 0

for ρr ≤ ρr and ρ = ρ+ for ρr > ρr. However, strictly we should also check ρ = ρ+
corresponds to a stable state, as the resonator may simply become unstable above the

threshold power. This requires we demonstrate (89) is always true for ρ = ρ+ when

ρ+ > 0. Applying the triangle inequality to the numerator on the left-hand side of (89)

gives

|2ρr − (1 + q−1
other + ρ+)ρ+| ≤ 2ρr + (1 + q−1

other + ρ+)ρ+ (97)

where

2ρr + (1 + q−1
other + ρ+)ρ+ = 4ρr − (2y)2 − (1 + q−1

other)
√

2ρr − (2y)2. (98)

The condition ρ+ > 0 can be rearranged to show (1+q−1
other)

√

2ρr − (2y)2 ≥ (1+q−1
other)

2,

which when applied to (97) and (98) implies

|2ρr − (1 + q−1
other + ρ+)ρ+| ≤ 4ρr − (2y)2 − (1 + q−1

other)
2. (99)

However, ρ+ > 0 also implies (2y)2−(1+q−1
other)

2 > 2ρr, so we have succeeded in showing

|2ρr − (1 + q−1
other + ρ+)ρ+| ≤ 2ρr, (100)

ensuring (89) is true and therefore that ρ = ρ+ is stable state for ρ+ > 0. Hence, in

conclusion we find

ρ(ρr) =

{

0 2ρr ≤ (1 + q−1
other)

2 + (2y)2

−(1 + q−1
other) +

√

2ρr − (2y)2 2ρr > (1 + q−1
other)

2 + (2y)2.
(101)

(101) completely determines how the steady-state behaviour of the resonator

changes in response to readout power. Consider the trajectory of S21 in the Argand

plane as a function of y; (101) is used to calculate qt, then the result is substituted into

(10). After some rearrangement, it can be be shown that S21 satisfies
∣

∣

∣

∣

S21 − 1 +
1

2(1 + q−1
other)

∣

∣

∣

∣

=
1

2(1 + q−1
other)

, (102)

below threshold and

|S21 − 1| = 1√
2ρr

(103)
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Figure 13. Expected form of the resonance ‘circle’ in the Argand plane for the model

described in Section 6.1 with n = d, or Qnl ∝ P−1
nl . At high enough powers, the

trajectory of S21 switches between two distinct circular paths.

above it. (102) and (103) both describe circular paths in the Argand plane, as illustrated

in Figure 13. The red (solid) circle shows the curve described by (102), for q−1
other = 0

in this case, which is simply the resonance circle that would be traced out by a purely

linear device. The green (dashed) circles show the circles described by (103) for different

values of ρr. These are centred on S21 = 1 and have radius 1/
√
2ρr. Figure 13 can be

used to understand the trajectory of S21 of the resonator as y is swept from −∞ to +∞.

A device that is below threshold for all y, i.e 2ρr ≤ (1 + q−1
other)

2, will trace out the red

circle clockwise, starting at ending at S21 = 1. If 2ρr > (1 + q−1
other)

2, the resonator will

be above threshold for at least some values of y. However, it must start below threshold

and so S21 begins on the green circle, moving clockwise from S21 = 1. It will continue

along the red (solid) circle until the intersection with the circle for the above threshold

solution for ρr; at this point 2ρr = (1 + q−1
other)

2 + (2y)2. A further increase in y moves

the device above threshold, so S21 starts to move clockwise around the green (dashed)

circle. This gives rise to a sharp point of inflection in the path. S21 will continue

along the green (dashed) circle until it intersects the red (solid) circle again, at which

point it drops below threshold again and traces the red (solid) path back to S21 = 1 at

y = ∞. The blue (thick solid) line illustrates the overall path for ρr = 2, illustrating

the characteristic distortion pattern associated with the model.

The analysis above can also be linked back to earlier results. Using (103) and (10),

above threshold we have

|S11| =
1√
2ρr

, (104)

i.e. R = |S11|2 is maintained at a fixed value by feedback. This is exactly as was
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Figure 14. Experimental data showing behaviour similar to that predicted by the

model of Section 6.3. (a) shows S21 in the Argand plane as measured on a downward

frequency sweep for VNA power levels -80dBm (blue), -75 dBm (orange), -70 dBm

(green), -65dBm (red), -60 dBm (purple) and -55dBm (brown). The crosses indicate

the measured data points and the dashed line of matching colour the model fit to the

data, as described in the text. The dashed black line is a circle of unit radius centered

on S21 = 0.5. (b) shows 1 − |S21|min versus applied readout power as measured at

the VNA output port. The blue crosses are the measured data points, while the red

line shows the line of best fit resulting from a least-squares fit using (105). The black

dotted line in (b) is least-squares fit allowing n/d to also vary, yielding n/d = 0.88. The

similar black dotted line in (a) shows the calculated IQ circle assuming the parameters

from the n/d = 0.88 fit and a VNA power of -70dBm.

predicted in Section 3.3.

6.4. Experimental observations

We have observed the remarkable behaviour described in Section 6.3 in many resonators.

One such device is the resonator with the higher Qc out of the two NbN devices described

previously, in Section 5.6.

Figure 14(a) shows S21 of this device in the Argand plane as measured on a

downward frequency sweep for different readout power levels. The mappings of the

different curves to readout power are given in the figure caption. In each case the

crosses show the experimental data and the dashed line of matching colour a fit of the

model from Section 6.3. The large discontinuities in the data in the lower half of the

plot are the result of the presence of a simultaneous reactive nonlinearity, which results

in switching. As can be seen, the model and data are generally in very good agreement.

The main place they differ is at the threshold where S21 switches between circles; in the

data these transitions are softer than the model predicts.



Nonlinear Effects in Superconducting Thin Film Microwave Resonators 40

Figure 14(b) is a plot of measured resonance depth (blue crosses) as a function

of readout power. Resonance depth is taken here to be the difference between

the transmission far off resonance and the minimum transmission in resonance, i.e.

1− |S21|min for a de-embedded device. Given the model, we would expect

1− |S21|min = qt =

{

1 2ρr ≤ (1 + q−1
other)

2 + (2y)2

1
1+

√
2ρr

2ρr > (1 + q−1
other)

2 + (2y)2.
(105)

At a fit of this model to the data, allowing Pc,nl to vary, is shown by the red line in

Figure 14(b). The agreement between model and data is again very good. However, the

gradient of the data is slightly shallower than the model would predict.

The observed differences between the data and the fits in both plots are indicative

of power-law behaviour with n/d close to, but sightly less than one. The curves in

Figures 12(a) and (b) still switch between circular paths, but the softer transitions are

more similar to the data in Figure 14(a). Similarly, (103) requires n/d < 1 to explain

the gradient of the measured data Figure 14(b). As a quantitative test, we repeated the

fit to the data in Figure 14(b) for values of n in the range 1 ≤ n ≤ 50 with d = 50. This

required the use of the full model from Section 6.1. The best chi-squared fit statistic

was obtained for n/d = 44/50 = 0.88 and the corresponding fit is shown by the black

dotted line in Figure 14(b). The fit parameters were then also used to calculate the

expected form of the resonance circle at -70 dBm of readout power: this is shown by the

black dotted line in Figure 14(b), and should be compared with the green crosses. For

clarity, we have only plotted this data in the range 0 < y < 2. In both cases, the lines

for n/d = 0.88 are seen to provide a much closer description of the data then original

lines for n/d = 1.

As described in Section 5.6, there is evidence that quasiparticle heating is the

physical mechanism responsible for the behaviour observed. However, it has also

been shown that superconducting weak links can be a source of nonlinearity in NbN

resonators [51].

6.5. Power law exponent greater than one

The behaviour for n/d > 1 is significantly different and much more complicated than

the other cases, as illustrated by the plots in Figure 15. These plots show a set of

simulated curves for different ρr for the case n = 3 and d = 2. Figure 15(a) shows the

measured resonance curves in the Argand plane, while Figure 15(b) shows the measured

amplitude of S21 as a function of the applied detuning.

Below ρr ≈ 1.1, ρ = 0 is the only solution. For ρr = 1.25 (the orange line in Figure

15(a)), we see the formation of a feature near y = 0. When this feature is viewed on a

plot of amplitude versus detuning, it appears as a small peak in S21 at the bottom of

the resonance trough (Figure 15(b)). As ρr is increased further this feature opens out

and folds back on itself, leading to shapes reminiscent of those for the case n/d ≤ 1, e.g.

the purple and brown curves. However, when ρr is further increased we see a surprising

new feature arise where near y = 0 where the device switches back to the state ρ = 0
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Figure 15. Example of the behaviour of the model of described in Section 6.1 when

n = 3, d = 2 and qother = 108, i.e. when the power law exponent is greater than one. In

(a), resonance circles are shown for ρr = 1.0 (under dashed black line), 1.25 (orange),

1.5 (green), 2 (red), 4 (purple), 8 (brown) and 16 (pink). (b) shows |S21| as a function

of y for ρr = 1.25 (orange), 1.5 (green), 2 (red), 4 (purple), 8 (brown) and 16 (pink). In

both plots we have shifted the lines by a constant offset (0.04) between power levels to

improve clarity. In (a) the lines shift from right to left with increasing readout power,

while in (b) they shift downwards. Note the discontinuities in the amplitude in the

wings of the resonance feature in (b).

in the region where dissipation should be strongest. This suggests there is a high power

state at which the dissipative state can effectively switch itself off; the rate of increase

in dissipation with ρr is sufficient that the dissipated power actually begins to fall with

increased ρr, so the dissipation cannot sustain itself.

What is not clear from Figure 15(a) is that the trajectory of S21 in the Argand

plane also becomes discontinuous. This is better illustrated by Figure 15(b), which

shows |S21| as a function of y for ρr = 2, 4, 8 and 16. As can be seen, there are now

step discontinuities in |S21| in the wings of the resonance feature. These occur where

S21 departs from the circle for ρ = 0 in the Argand plane.

What may complicate the observation of such behaviour in practice is the fact the

state ρ = 0 is also always stable for n/d > 0. As discussed before, which state the device

ends up in will depend on how the device has been prepared, e.g. is y or power being

swept? Without further detailed analysis it is not possible to say what method, if one

exists, is needed to see the unusual behaviour shown.

Similar step discontinuities to those shown in Figure 15(b) has been observed by

Abdo [51] in a set of NbN resonators. In addition, they observe hysteresis around these

steps with sweep direction. This latter behaviour can be explained by the resonator
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switching from a state with ρ > 0 to the one with ρ = 0 at the first transition point,

then remaining in this state as it passes through the location of the second discontinuity.

They also see the on-resonance transmission initially increase with increasing readout

power, then jumping suddenly to a fixed, higher, value; this is consistent with the

behaviour predicted by Figure 15 if the device were a transmission resonator. They

attribute this behaviour to either weak-link formation in the NbN grain structure or,

alternatively, the formation of localised hot spots.

7. Simultaneous action of several mechanisms

We have considered each nonlinear process acting in isolation, but in some cases, it is

the interaction between different processes that determines behaviour. As an example,

consider a resonator limited by TLS loss. The results of Section 4 when taken alone

suggest that the quality factor can be improved by increasing the readout power so

as to saturate the TLS. However, at some point as the readout power is increased,

quasiparticle heating may become significant, resulting in the quality factor decreasing

as the power is increased further. The maximum achievable quality factor is determined

by the interplay of the two processes, and their relative characteristic power scales.

This ‘sweet spot’ is the operating regime often chosen for best device performance. In

extreme cases, we have observed that quasiparticle heating can prevent TLS saturation,

and so the quality factor only decreases as power is applied.

Given the importance of these effects, it is valuable to consider how the models

presented can be modified to include interactions. The procedure is conceptually

straightforward, but computationally involved. A single variable fully characterises the

‘state’ of the nonlinearity for each process considered: U for the reactive nonlinearity

and TLS loss, nqp for quasiparticle heating, and Pnl for a general physically unidentified

nonlinearity. Further, for a particular set of readout conditions the value of this state

parameter is found by solving a single equation, often an equilibrium or self-consistency

condition: (49), (68) and (83). It is therefore possible to model several processes acting

together by solving these equations simultaneously, replacing the Qother term in the

individual models by the contributions from other processes. We have developed a

convenient conceptual framework for structuring these calculations and easily including

new processes. However, space precludes a full description of the method and an

exploration of the rich set of behaviours that results. Instead they will be detailed

in a companion publication [52].

8. Extracting behaviour from data

Finally, we indicate how key parametric information can be determined easily from

experimental data. It is normally straightforward to record a set of swept-frequency

resonance curves at different readout power levels using a VNA or homodyne readout

system. The difficulty lies in extracting the underlying nonlinear behaviour when the
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resonance curves become distorted. In other words, distorted resonance curves are

merely manifestations of the change in the resonance frequency and Q of the underlying

simple Lorentzian resonance changing as the readout frequency and power are varied.

In principle, we could fit a full nonlinear model of the type described in Section 4–7 and

obtain the associated physical parameters, but to do so we need to know the expected

nonlinear behaviour in advance. Additionally, as the model becomes more complex so

does the fitting process. Section 3, however, motivates a different approach.

The aim is to directly extract the quality factor and resonant frequency at zero

realised detuning, for different readout power levels. To do so, we must ensure that the

swept-frequency measurements pass through the point of zero realised detuning. This

is discussed in Section 3.4, and the process is normally straightforward; for example, if

the resonant frequency is known to decrease with applied power, the frequency must be

swept downwards when the resonance curves are measured. Next we must identify the

point of zero realised detuning in each resonance curve. The rules derived in Section 3.2

can be used to do so: this is as simple as finding the extrema in the transmission

gain or point of zero phase shift. Finally, having located the point, the resonant

frequency follows from the readout frequency, and the quality factors from the measured

S-parameter using (9)–(12). This process is repeated to give the key parameters as a

function of applied power.

This method has several attractive features. First, the data and processing

needed are straightforward. Second, it is applicable to highly distorted curves, and

can therefore be used over wide power ranges. In other words, it is still possible to

extract mathematically meaningful, and physically well-defined, resonance frequencies

and quality factors, even though the measured resonance curves switch hysteretically,

and bear no resemblance to simple Lorentzians. Third, by definition we know the realised

detuning at which the parameters were obtained, and this makes it straightforward

to convert the applied readout power into the quantities that control the nonlinear

behaviour.

As an example, consider a resonator exhibiting a mixture of reactive and dissipative

nonlinear behaviour. Assume that the reactive nonlinearity results in Duffing-like

behaviour with an increasingly negative frequency shift at high readout powers. To apply

our parameter-extraction scheme a set of swept-frequency resonant curves would be

recorded at different readout power levels, being careful to sweep the readout frequency

downwards in each measurement, which is in the opposite direction to the usual VNA

settings. The recorded data would then be processed by first removing any experimental

artefacts, such as gain- and phase slopes. The maximum in transmission gain of each

resonance curve would be located, checked against phase, and used to calculate values

of νr and Qt/Qc at the corresponding readout power and x = 0 via (33) and (34). The

data shown in Figures 11 and 14 were taken in this manner.
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9. Conclusions

Superconducting thin-film resonators are used extensively in many applications. They

can take a variety of physical forms, and can be fabricated using a wide range

of materials, including proximitised superconducting multilayers. From a device

perspective, it is usually assumed that the resonator alone acts as an a near-ideal linear

device, exhibiting a perfect response in the form of a Lorentizian notch or peak. In reality

this simple behaviour is rarely seen, and nonlinear behaviour becomes apparent when

the readout power is increased to optimise some aspect of overall device performance.

We have discussed how reactive and dissipative nonlinearities can, and do, change

the intrinsic response of thin-film resonators considerably, leading to complex behaviour

that can mask or degrade the primary device-operation being sought. At its most minor,

resonance curve distortion can indicate heating, which may increase the noise generated

by the device; at its most significant, resonance curve distortion can be associated with

hysteretic switching between different stable states, and the operating point can depend

on the order in which the external parameters are changed.

We have shown that most, if not all, of the complex phenomena commonly seen

in experiments can be described by a model in which the underlying resonance is a

single-pole Lorentizian, but whose centre frequency and quality factor change depending

on the energy stored in the resonator and/or the power dissipated in various physical

processes. What is seen experimentally are samples taken from an ideal resonance

curve that is moving and changing width as external parameters, such as readout

frequency and power, are swept. According to this model, it is perfectly proper to

refer to, and to measure, the Q of the underlying resonance, even though the swept

frequency curves appear highly distorted and perhaps hysteretic. Indeed, there is a great

deal of information contained in the parametric dependence of the Q of the underlying

resonance, not just in the resonant frequency. In those cases where the resonance curve is

highly distorted, the shape of the trajectory in the Argand plane gives valuable insights

into the physical processes present.

Kinetic inductance is an example of a reactive nonlinearity, which leads to a shift

in the resonance frequency, and eventually hysteretic switching, but the trajectory

in the complex plane remains circular. The point of zero detuning is important,

and can still be found from zero crossings and stationary points in the transmission

and reflection amplitudes, as for a linear device. TLSs in oxides primarily introduce

a dissipative nonlinearity. We have described a fixed point method for calculating

measured resonance curves, and shown how the trajectory in the Argand plane takes

on a characteristic ‘tear drop’ shape. We have also shown that TLSs cannot produce

hysteresis, but they lead to a phenomenon, seen experimentally, where an apparently

absent resonance suddenly switches on as the readout power is increased. Quasiparticle

heating leads to a completely different kind of dissipative nonlinearity. Sub-gap readout

photons change the energy distribution and number density of quasiparticles, which

themselves change the dissipation factor. We have presented a model based of the
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Rothwarf Taylor equations that gives a simple expression for the internal quality factor

as a function of readout power. This formulation leads to a scheme in which resonator

dynamics is described by a quartic equation, and we discussed the stabilities of the

roots of this equation under different coupling conditions. We find different behaviours

in the undercoupled and overcoupled cases, due to the existence of negative and positive

feedback respectively in the quasiparticle generation process. Crucially, the trajectory

in the complex plane takes on a highly characteristic two-part piecewise circular form.

In this case, the points of zero detuning can be identified directly, and the quality

factor of the underlying resonance found. Finally, we introduced a generic power law

model, where the internal quality factor depends on the dissipated power raised to the

power of a rational number. This generic model captures the key features of specific

dissipative nonlinearities, but additionally leads to insights into how general dissipative

processes create characteristic forms of behaviour in the Argand plane. We have found

these insights to be highly valuable when interpreting the rich variety of behaviour seen

experimentally in different kinds of device.

Appendix A. Additional results from Swenson’s model

Appendix A.1. Point of onset of hysteresis

For notational convenience define z = y/(1 + η) and z0 = y0/(1 + η). Then we can

rewrite (42) as an equation defining the roots of the cubic polynomial

f(z) = z3 − z0z
2 + z/4 − (z0 + a)/4. (A.1)

For hysteresis to occur, f(z) must have three real roots. A sufficient condition to ensure

this is that f(z) has two stationary points for real z and that f(z) differ in sign at these

points. Factor f(z) as

f(z) = (z − z0/3)
3 − c(z − z0/3)− d, (A.2)

where c = (z20−3/4)/3 and d = (2z30/9+z0/2+3a/4)/3. In this form it is straightforward

to see that there are two stationary points only when

|z0| >
√
3/2, (A.3)

that they occur at z = z± for

z± − z0
3

=
1

3

√

z20 −
3

4
, (A.4)

and that

f(z±) = ∓2c

3

√

c

3
− d. (A.5)

Hence we require

2c

3

√

c

3
> |d| (A.6)

for the signs of f(z+) and f(z−) to differ.
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From the analysis earlier in the paper we know the hysteretic regime occurs where

z0 < 0. Let z0 = −
√
3/2− δ for 0 < δ ≪

√
3/2, in which case

2c

3

√

c

3
≈ 2

(

δ

3
√
3

)3/2

(A.7)

and

d ≈ −
√
3

9
+

a

4
− δ

3
. (A.8)

(A.6) is then satisfied when

a >
4
√
3

9
+

4δ

3
−
(

4δ

3
√
3

)3/2

. (A.9)

The two terms in δ in (A.9) always sum to a positive number for δ < 1, so the overall

threshold for switching is a > 4
√
3/9.

Appendix A.2. Location of the switching point on a downward sweep

(43) can be rearranged to yield the following iterative sequence for u−:

u
(n+1)
− = − 1

8a
(1 + 4{u(n)

− }2)2. (A.10)

Either by iteration for a few terms or by examination of this sequence, it can be seen

that in general

u− = − 1

8a
+O

(

1

a3

)

. (A.11)

This result can then be substituted into (42) to find the value y− of y0 at which the

resonator is expected to switch states on a downward sweep, yielding

y− ≈ −(1 + η)a+O

(

1

a

)

, (A.12)

in the limit a ≫ 1. Since both y− and η can be easily measured in such a sweep, (A.12)

provides a convenient way of estimating a experimentally, either as a starting point for

a fit or for inferring Uc,kin. This approach is slightly more straightforward than that

proposed in Swenson [29], which involves identifying the onset of bifurcation (a ≈ 0.8).

Appendix B. Proofs relating to the TLS model

Appendix B.1. Proof that solution of (50) exists

Let I denote the interval [0, 1], which corresponds to the range of values of α, where

α = f(α). We will use square brackets to denote an interval limit that includes the end

point and curved brackets to indicate a limit that excludes the end point. For example,

the interval [a, b] of x corresponds to a ≤ x ≤ b and [a, b) to a ≤ x < b. Given definitions

(51) and (54), it is straightforward to show that for the problem in hand

df

dα
=

rξtlsχ
2

[(1− rα)2 + χξtls]3/2
. (B.1)
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We know ξtls ≥ 0, 0 ≤ r ≤ 1 and 0 ≤ χ ≤ 1, so df/dα ≥ 0 for any real α. It follows that

f(α) is increasing function on I, with the consequence f(0) ≤ f(α) ≤ f(1) for α ∈ I.

These limits are explicitly

f(0) = 1− 1√
1 + χξtls

(B.2)

and

f(1) = 1− 1
√

1 + χξtls/(1− r)2
. (B.3)

The conditions on χ and ξtls ensure χξtls ≥ 0, so we have 0 ≤ f(0), f(1) ≤ 1. Therefore,

f(α) ∈ [0, 1] for all α ∈ [0, 1].

The last statement is sufficient to ensure the existence of at least one solution of

f(α) = α, i.e. (50), with α ∈ I, via the one-dimensional form of Brouwer’s fixed-point

theorem. The proof is as follows. Consider a new continuous function h(α) = f(α)−α.

If f(0) = 0 or f(1) = 1, then we trivially have a solution to (50). If not, we know

f(0) > 0 and f(1) < 0 and this implies h(0) > 0 and h(1) < 0 respectively. It follows

by the intermediate-value theorem [53] that h must have at least one root in I, with the

existence of this root implying (50) is satisfied.

Appendix B.2. Proof of convergence of (55) and physical uniqueness of solution for

x = 0

We will make use of the following fixed-point theorem: if a function g(x) maps an

interval I into itself and |dg/dx| < 1 for x ∈ 1, then g(x) has a unique fixed point

x = f(x) that is the limit n → ∞ of the sequence xn = g(xn−1) for x0 ∈ I. This is

the one-dimensional form of Banach’s fixed-point theorem. In Appendix B.1 we showed

f(α) maps the interval I into itself, so to prove (55) converges we only need to consider

the conditions on the derivative.

If x = 0, then χ = 1 for all α. With χ = 1 in (B.1), we can define three cases to

cover all possible physical situations. Case 1 is where ξtls > r2, so df/dα < 1 for all α.

If instead ξtls ≤ r2, it is straightforward to show that df/dα < 1 if α is less than

α∗ =
1

r

[

1−
√

ξ
2/3
tls − ξtls

]

. (B.4)

Cases 2 and 3 are where α∗ > 1 and α∗ < 1 respectively. In Cases 1 and 2, f(α) satisfies

the fixed-point theorem over the whole of I. Consequently, (55) converges to the unique

physical solution for any starting value of α in I.

In Case 3, f(α) no longer satisfies the condition on the derivative over the whole of

I. However, remembering that r < 1 (by definition) and that Case 3 requires ξtls > r2,

it is simple to prove

f(α∗) = 1−

√

ξ
2/3
tls − ξtls

(rξtls)1/3
< α∗. (B.5)
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Consequently, f(α) satisfies the conditions of the fixed point theorem on the reduced

interval [0, α∗), so (55) will converge to a single physical solution for suitable starting

point. However, we cannot yet say that the solution found is this manner is the only

physically possible one; to do so we must show there are no other fixed-points in

the interval [α∗, 1]. The proof of the latter statement is as follows. Consider again

the function h(α) introduced in Appendix B.1. In Case 3, dh/dα ≥ 1 over [α∗, 1],

making h(α) an increasing function over the same interval. Because we know that

h(α∗), h(1) < 0 from (B.5) and Appendix B.1, we can then use the fact h(α) is increasing

to show h(α) < 0 over [α∗, 1]. The latter statement precludes the existence of a fixed-

point of f(α) in [α∗, 1]; the fixed-point in [0, α∗) is therefore the only physical solution.

Appendix B.3. Proof of convergence of (55) and physical uniqueness of solution for

x 6= 0

When x 6= 0 the full functional dependence of χ on α, as given by (54), must be taken

into account. If χ is treated as an independent variable in (51) and (B.1), then it can be

shown that both f(α) and df/dα are increasing functions of χ for χ ≥ 0 and α ∈ [0, 1].

However, χ is actually a decreasing function of α on the same interval when x 6= 0. It

follows that both f(α, x) ≤ f(α, x = 0) and df(α, x)/dα ≤ df(α, x = 0)/dα on this

interval.

These last two inequalities mean the proof of Appendix B.2 in Cases 1 and 2 and

the first part of Case 3 extend trivially to x 6= 0. The proof of the second part of Case

3 follows straightforwardly; if in some interval f(α, x = 0) is bounded above by α and

f(α, x) is bounded above by f(α, x = 0), then it is not possible for f(α, x) to intersect

α. The results of Appendix B.2 therefore also hold when x 6= 0.

There is also an important physical consequence to this result. By showing that

there is a only a single physical solution of (50) for real x and ξtls with ξtls ≥ 0, we have

ruled out the possibility of hysteretic behaviour when TLS response is the only source

of nonlinearity.

Appendix C. Dependence of the quasiparticle quality factor on

quasiparticle density

Let σ = σ1− iσ2 denote the bulk conductivity of a superconductor, with σ1 and σ2 both

real. Gao [22, 41] has shown that in the low-frequency (hν ≪ 2∆), low-temperature

(T/Tc < 1), regime in which superconducting resonators are employed, the Mattis-

Bardeen [54] equations for σ can be approximated by

σ1

σn

=
2∆0

hν

nqp

N0

√
2πkbT∆0

sinh

(

hν

2kbT

)

K0

(

hν

2kbT

)

(C.1)

and

σ2

σn
=

π∆

hν

[

1− nqp

2N0∆0

(

1−
√

e−hν/2kbT I0

(

hν

2kbT

))]

. (C.2)
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Here σn is the normal state conductivity and ∆0 the superconducting gap energy at

absolute zero. These results can understood physically in terms of a two-fluid model.

In the regime considered the dominant charge carriers are the Cooper pairs, which

move without scattering and hence do not contribute the real part of the conductivity,

σ1. Instead, their inertia manifests itself as an inductance like term as described

by σ2 (kinetic inductance). However, some fraction of the Cooper pairs are broken

into quasiparticles, either by thermal processes or by external forcing. This loss

of Cooper pairs reduces the inductive response, as described by the second term in

(C.2). In addition, the quasiparticles behave electrically approximately like normal

state Drude model electrons, leading to a resistance contribution proportional to nqp:

(C.1). Although it is not immediately obvious from (C.1) and (C.2), σ2 ≫ σ1 in this

regime. Further, we can usually make the further approximation σ2/σn ≈ π∆0/hν.

We must now link Q with σ. In the case of a lumped element device, this is

relatively straightforward. This is because the superconductor film is normally used in

a regime where it is electrically thin and the contribution from geometric reactance is

small, so it can be approximated as an impedance Z given by

1

Z
=

σt

Nsq
, (C.3)

where t is the film thickness and Nsq is the length of the superconducting trace expressed

in squares. Z constitutes the parallel inductance L and resistance R in (b) of Figure 1.

Using the normal result for the quality factor of a parallel tank circuit, we find

Q−1 =
2πνL

R
=

σ1

σ2

. (C.4)

Making use of (C.2) we then have Q−1 ∝ nqp, as assumed in (56).

In the case of a transmission line resonator of length l, if γ is the complex

propagation constant of waves on the line then it can be shown that

Q−1
i ∝ ℜ[γ]l. (C.5)

Strictly this expression accounts for both Ohmic and dielectric losses; in what follows

we will assume there are only Ohmic losses so Qi = Qqp. If the metallisation of a

transmission line is superconducting, the series impedance per unit length of line, Z, is

modified to

Z = iωLg + gZs (C.6)

where Lg is the inductance per unit length in the case of PEC conductors, Zs = Rs+ iXs

is the surface impedance of the superconductors and g is a geometrical factor. The shunt

admittance per unit length is the same as the PEC case. In general, Zs is a non-trivial

function of σ. However, for most resonators of practical interest |Xs| ≫ Rs and we may

approximate

γ =

√

Z
C ≈ ℑ[γ]

[

i+
κfRs

2Xs

]

(C.7)
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where the factor κf = gXs/(2πiνLg + gXs) is normally referred to as the kinetic

inductance fraction of the superconducting line. Zmuidzinas [21] has shown that if

σ2 ≫ σ1 then

Rs

Xs

≈ κg
σ1

σ2

(C.8)

where κg is a scaling factor that varies in magnitude between 1/3 and 1 depending

on the thickness of the film and whether or not it is in the extreme anomalous limit.

Combining (C.5), (C.7) and (C.8) we again obtain the approximation Qqp ∝ nqp.
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